Sr. No.	Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of Learning (Approx.)
	First Semester (1 st year of UG)				·
1	Waves and Mechanics	EP101	3-1-0	4	70
2	Basics of Electronics	EP103	3-0-2	4	85
3	Thermal Physics	EP105	3-1-0	4	70
4	Numerical Methods and Computer Programming	EP107	3-0-2	4	85
5	Mathematics for Physical Sciences-I	MA123	3-1-0	4	70
6	Indian Value System and Social Consciousness	HS120	2-0-0	2	40
			Total	22	420
7	Vocational Training / Professional Experience (Optional) (Mandatory for Exit)	EPV01 / EPP01	0-0-10	5	200 (20 x 10)
	Second Semester (1 st year of UG)				
1	Basics of Electromagnetics	EP102	3-1-0	4	70
2	Semiconductor Physics	EP104	3-0-2	4	85
3	Introduction to Python Programming	EP106	3-0-2	4	85
4	Mathematics for Physical Sciences-II	MA118	3-1-0	4	70
5	English and Professional Communication	HS110	3-1-0	4	70
			Total	20	380
6	Vocational Training / Professional Experience (Optional) (Mandatory for Exit)	EPV02 / EPP02	0-0-10	5	200 (20 x 10)
	Third Semester (2 nd year of UG)				
1	Solid State Physics	EP201	3-0-2	4	85
2	Classical Mechanics	EP203	3-1-0	4	70
3	Optics, Laser and Photonics	EP205	3-0-2	4	85
4	Energy and Environmental Engineering	EG110	3-0-2	4	85
5	Elective (DE-1)	EP2AA	3-1-0	4	70
			Total	20	395
6	Vocational Training / Professional Experience (Optional) (Mandatory for Exit)	EPV03 / EPP03	0-0-10	5	200 (20 x 10)
	Fourth Semester (2 nd year of UG)				
1	Introduction to Mathematical Physics	EP202	3-1-0	4	70
2	Quantum Physics and Applications	EP204	3-1-0	4	70
3	Electrodynamics and its Applications	EP206	3-1-0	4	70
4	Digital Electronics	EP208	3-0-2	4	85
5	Elective (DE-2)	EP2BB	3-X-X	4	70/85
			Total	20	465/480
6	Vocational Training / Professional Experience (Optional) (Mandatory for Exit)	EPV04 / EPP04	0-0-10	5	200 (20 x 10)

	Fifth Semester (3 rd year of UG)		-		
1	Atomic and Molecular Physics	EP301	3-1-0	4	70
2	Introduction to Quantum Computation	EP303	3-1-0	4	70
3	Nuclear and Particle Physics	EP305	3-0-2	4	85
4	Elective (DE-3)	EP3AA	3-1-0	4	70
5	Elective (DE-4)	EP3BB/	3-X-X	4/5	70/100
		CYXXX			
			Total	20/21	365/395
6	Vocational Training / Professional Experience	EPV05 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	EPP05			(20 x 10)
	Sixth Semester (3 rd year of UG)				
1	Microprocessor and Microcontrollers	EP302	3-0-2	4	85
2	Plasma Science and Applications	EP304	3-1-0	4	70
3	Artificial Intelligence	CS332	3-0-2	4	85
4	Machine Learning	EC366	3-0-2	4	85
5	Elective (DE-5)	EP3CC	3-1-0	4	70
6	Elective (DE-6)	EP3DD	3-X-X	3/4	55/70/85
			Total	23/24	450/465/480
7	Vocational Training / Professional Experience	EPV06 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	EPP06			(20 x 10)
	Seventh Semester (4 th year of UG)				
1	Statistical Mechanics	EP401	3-1-0	4	70
2	Elective (DE-7)	EP4AA	3-1-0	4	70
3	Elective (DE-8)	EP4BB	3-X-X	4	70/85
4	Elective (DE-9)	EP4CC	3-1-0	4	70
5	Elective (DE-10)	EP4DD	3-1-0	4	70
			Total	20	350/365
6	Vocational Training / Professional Experience	EPV07 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	EPP07			(20 x 10)
	Eighth Semester (4 th year of UG)				
1	Industrial Internship / Professional Experience	EP402	0-0-40	20	800
	(Mandatory)				(20 x 40)
			Total	20	800

B.Tech. (Engineering Physics)

Sr. No.	Elective	Code	Scheme L-T-P
	DE-1 (3 rd semester)		
1	Discrete Mathematical Structure	MA205	3-1-0
2	Professional Ethics, Economics and Business Management	MG210	3-1-0
	DE-2 (4 th semester)		
1	Data Structure	CS102	3-0-2
2	Interpretative Molecular Spectroscopy	CY302	3-1-0
	DE-3 (5 th semester)		
1	Introduction to Special Theory of Relativity	EP351	3-1-0
2	Basics of Astronomy and Astrophysics	EP353	3-1-0
3	Quantum Mechanics-II	EP355	3-1-0
	DE-4 (5 th semester)		
4	Remote sensing	EP357	3-1-0
5	Low-Dimensional Physics and Applications	EP359	3-1-0
6	State and Properties of Matter	CY205	3-1-2
	DE-5 (6 th semester)		
1	Materials Science and Engineering	EP352	3-1-0
2	Density Functional Theory and Applications	EP354	3-1-0
3	Particle Physics and Applications	EP356	3-1-0
	DE-6 (6 th semester)		
4	Solar Cell Technology	EP358	3-0-0
5	Non-Destructive Testing	EP360	3-0-0
6	Thin Films and Vacuum Technology	EP362	3-0-0
7	Global Navigation Satellite System	EP364	3-0-0
	DE-7 (7 th semester)		
1	Astrophysics and Space Science	EP461	3-1-0
2	Introduction to Quantum Field Theory	EP463	3-1-0
3	Advanced Quantum Computation	EP465	3-1-0
	DE-8 (7 th semester)		
4	Electromagnetic Communication	EP467	3-1-0
5	Characterization Techniques	EP469	3-0-2
6	Elementary Excitation in Solids	EP471	3-1-0
	DE-9 (7 th semester)		
7	Condensed Matter Physics	EP473	3-1-0
8	Microwave Plasma Techniques	EP475	3-1-0
	DE-10 (7 th semester)		
9	Nanoscience and Nanotechnology	EP477	3-1-0
10	Laser Technology and Applications	EP479	3-1-0
11	Nuclear Science and Technology	EP481	3-0-2

B.Tech. (Engineering Physics)

First Year of Four Years of B.Tech. (Engineering Physics)	Scheme	L	т	Р	Credit
B.Tech. I, Semester-I					
WAVES AND MECHANICS					
EP101		3	1	0	4

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Provide a basic understanding of vector algebra and coordinate systems.
CO2	Define the concepts of various laws of motion and moments of inertia.
CO3	Explain Euler's concepts related to rigid body motion.
CO4	Interpret the elastic properties of materials and rephrase the concept of hydrodynamics.
CO5	Develop an understanding of simple harmonic motions via various applications.
CO6	Classify waves and oscillations.

2.	Syllabus				
	FUNDAMENTALS OF VECTOR ALGEBRA AND DIFFERENT COORDINATE SYSTEMS	(07 Hours)			
	Unit vectors, Vector operations, Scalar and vector triple products, Vector algebra in terms of Differential calculus, Cartesian coordinate system, Cylindrical coordinate system, Sph system.	•			
	NEWTON'S LAWS OF MOTION, CONSERVATION LAWS, AND MOMENTS OF INERTIA	(08 Hours)			
	Mechanics of single and many particles, Equation of motion, Various conservation laws, Mo Motion in the central force field	oments of inertia			
	RIGID BODY MOTION	(08 Hours)			
	Euler's theorem, Angular momentum and kinetic energy, Euler's equation of motion, Euler's angles.				
	ELASTICITY AND HYDRODYNAMICS	(08 Hours)			
	Stress and strain, Young's modulus, Shear modulus and Bulk modulus, Buoyancy, Types of fle Bernoulli's equation, Viscosity, Terminal velocity.	uid flow,			
	WAVES	(07 Hours)			
	Wave Motion, Interference and the principle of superposition, Reflection and transmission of waves, Standing waves, Vibration, Transverse and longitudinal waves; Propagation of sound wave, its properties, Beats, Diffraction, Doppler effect.				
	OSCILLATIONS	(07Hours)			
	Simple Harmonic Oscillations, Damped Oscillations, Coupled Oscillations, and Resonance.				
	Tutorials will be based on the coverage of the above topics separately (15 Hours)				
	(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)				

3.	Tutorials
1.	Proof of various relations formed using the different kind of vectors.
2.	Cover the various mechanical and electrical problems based on vector analysis.
3.	Though the numerical exercise one will learn the role of coordinate systems to solve the problems.
4.	Problems based on the motion of a single and many particles under the influence of different kindof forces.
5.	Projectile motion of particle, Motion of a charged particle in electromagnetic fields, Variousproblems related to moment of inertia.
6.	Numerical questions based on the aspects covered in the section of rigid body motion.
7.	Various types of questions for the calculation of stress, strain, young's modulus, shear modulus and bulk modulus;
8.	Numerical problems based on Bernoulli principles and terminal velocity.
9.	Basic numerical questions to understand the concept of waves on string and sound waves both andobtain various physical parameters used to quantify the waves.
10.	Problems based on simple harmonic motion, damped and coupled oscillations etc.

4.	BOOKS RECOMMENDED
1.	Mathur D. S., Mechanics, S. Chand & Company, 2000.
2.	Takwale R. G. & Puranik P. S., Introduction to Classical Mechanics, Tata McGraw-Hill Book Co., 1997.
3.	Feynman R. P., Lighton R. B. and Sands M., The Feynman Lectures in Physics Vol. 1, NarosaPublishers, 2008.
4.	Verma H. C., Concepts of Physics, Vol. 1 & 2, Bharati Bhavan, 2007.
5.	Landau L. D. & Lifshitz E M, Course on Theoretical Physics, Vol. 1: Mechanics, Addison- Wesley, 2002

B.Tech. (Engineering Physics)

First Year of Four Years of B.Tech. (Engineering Physics)	Scheme	L	Т	Р	Credit
B.Tech. I, Semester-I BASICS OF ELECTRONICS		3	0	2	4
EP 103					

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Understand the basis concept of circuit analysis theorem
CO2	Demonstrate familiarity with basic electronic components and use them to design simple electronic circuits
CO3	Describe the application of transistors for Current and voltage amplification. Also, to describe the characteristics of different configurations of the transistor
CO4	Discuss the ideal of operational amplifier and their electrical parameters
CO5	Analyze and design the different types of Oscillators, and their applications

2.	Syllabus					
	BASIC CIRCUIT ANALYSIS (06 Hours)					
	Kirchhoff's current and voltage law, Network analysis, Superposition theorems.					
	SEMICONDUCTOR JUNCTION DIODES & APPLICATIONS	(08 Hours)				
	The open circuit p-n junction, Energy bands in junction diode, I-V characteristics of p-n junction, diode as rectifier, Half-wave, full-wave, and bridge rectifier. Various applications of diode					
	SEMICONDUCTOR TRANSISTOR & APPLICATIONS	(08 Hours)				
		Junction transistor, transistor construction, CB, CE and CC configurations, cut-off and saturation regions, transistor load-line, Quiescent point, Transistor as an amplifier, Current gain and voltagegain.				
	FREQUENCY RESPONSE OF AMPLIFIERS	(07 Hours)				
	The gain-bandwidth product, frequency response of CB, CE and CC amplifier, Classification of amplifiers, Feed-back in amplifiers and its classification, Study of different properties with feed- back Amplifier applications.					
	OPERATIONAL AMPLIFIERS	(08 Hours)				
	The differential amplifier, The basic operational amplifier, The emitter-coupled differential amplifier Transfer characteristics of a differential amplifier, Offset error voltage and currents, Parameters Frequency response.					
	OSCILLATORS	(08 Hours)				
	Criteria for oscillation, tank circuit, L-C oscillator, Hertley Oscillator, Colpitts oscillator, The phaseshift oscillator, the Wien bridge oscillator, Crystal oscillator.					
	Tutorials will be based on the coverage of the above topics sepa	rately (15 Hours)				
	(Total Contact Time: 45 Hours + 15 H	lours = 60 Hours				
L	Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX:					

3.	Practicals
1.	Study and verification of Norton's Theorem.
2.	Study and verification of Thevenin's Theorem.
3.	Study and verification of Reciprocity Theorem.
4.	Study and verification of Superposition Theorem.
5.	Study and verification of Maximum Power Theorem.
6.	Study of Half Wave Rectifier.
7.	Study of Full Wave Rectifier.
8.	Study of Full Wave Bridge Rectifier.

4.	Books Recommended
1.	Ryder, J.D., Electronics fundamentals and applications: Integrated and Discrete Systems, Prentice – Hall of India, 1999.
2.	Sze, S.M., Physics of Semiconductor Devices, John Wiley & sons, 1981.
3.	Floyd, T.L., Electronic Devices (5th ed). Pearson education Asia, 2001.
4.	Malvino, A.P. Electronic Principles, Tata McGraw Hill,1999.
5.	Mottershed, A., Electronic Devices and circuits, Prentice Hall India, 1989.

B.Tech. (Engineering Physics)

First Year of Four Years of B. Tech. (Engineering Physics)	Scheme	L	т	Р	Credit
B. Tech I, Semester - I THERMAL PHYSICS		3	1	0	4
EP105					

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Explain the fundamental concepts of thermodynamics laws and thermodynamic processes
CO2	Acquire the knowledge of Maxwell's thermodynamics relations and thermodynamic potentials.
CO3	Learn the concepts of black body radiation from thermodynamics point of view.
CO4	Develop the fundamental concept of kinetic theory of gases.
CO5	Learn the properties of ideal gas and real Van der wall's gas state.

2.	Syllabus	
	FUNDAMENTALS OF THERMODYNAMICS	(12 Hours)
	Zeroth law of Thermodynamics, First and Second laws of Thermodynam Thermodynamic process, Heat capacity and Specific heat capacity, Interna engine, Carnot Cycle and Theorem, Calculations of change of internal ene thermodynamic processes.	I energy and entropy, Heat
	THERMODYNAMICS POTENTIALS & MAXWELL'S RELATIONS	(10 Hours)
	Internal Energy, Gibbs and Helmholtz energy, Gibb's paradox and its resolution thermodynamic relations, Application of Maxwell's thermodynamic relations	•••
	THERMODYNAMICS OF BLACK BODY	(08 Hours)
	Black body and characteristics, Radiation principles like Rayleigh Jeans, Wei body radiation	n's and Planck's law of black
	KINETIC THEORY OF GASES	(08 Hours)
	Maxwell Boltzmann equation, Postulates of kinetic theory of gases, velocity energy, Kinetic-molecular model of an ideal-gas, kinetic interpretation of tem of gas molecules, Maxwell's law of equipartition of energy.	-
	TRANSPORT PROPERTIES	(07 Hours)
	Viscosity of a gas, Thermal conductivity of gases, Van der wall's equation of s	state, Brownian motion.
	Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
	(Total Contact Time: 45 H	lours + 15 Hours= 60 Hours)

3.	Tutorials
1	Cover a variety of numerical problems to understand the concepts of thermodynamics
2	Problems based on refrigerator, heat engine and Carnot engine to understand its working principle.
3	Calculation of various equilibrium quantitates such as heat capacity, internal energy, pressure, volume,
	temperature etc. using the thermodynamics potential and Maxwell's relations.
4	Numerical exercise on Maxwell Boltzmann equation and distribution function to understand its concepts
	used in Kinetic Theory of gases.
5	Problems to obtain the various equilibrium quantities derived in the section of kinetic theory of gases.
6	Problems based on transport properties of gases mainly focused on the calculation of viscosity and thermal
	conductivity
7	Problems based on radiation principles, Wein's and Planck's law related to the thermodynamics of black
	body radiation.

4.	Books Recommended
1	Sears F. W. & Salingar, Thermodynamics, Kinetic theory and Statical Thermodynamics, 3rdEdition. Addison-
	Wesley/Pearson, 1975.
2	Young & Freedman, Sears and Zemanski's University Physics, Pearson Education, Singapore, 2004.
3	Feynman R. P., Leighton R. B. and Sands M., The Feynman Lectures in Physics, Vol.1 Narosa Publishers, 2008.
4	Zemanski M. W., Heat and Thermodynamics, McGraw Hill, 1957.

B.Tech. (Engineering Physics)

First Year of Four Years of B. Tech. (Engineering Physics) B. Tech I, Semester - I	Scheme	L	Т	Р	Credit
NUMERICAL METHODS AND COMPUTER PROGRAMMING					
EP107		3	0	2	4
	1				

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO 1	Students will be able to understand basics about error and numerical solution method for solving Algebraic and Transcendental Equations
CO 2	Analyze about interpolation and curve fitting method for solve real world problems
CO 3	Understand about method for Numerical integration and Ordinary Differential Equations
CO 4	Understand of basics of computers and programming language
CO 5	students will be able to simulate that physical science problems by knowing some compiler languages

2.	Syllabus	
	BASICS OF COMPUTER PROGRAMMING	(10 Hours)
	Operating systems, higher level compiler languages, algorithm; flow charting, C Language: I C language, identifiers and keywords, data types, constants and variables, arithmeticexpression output statements, conditional statements: while-loop, for-loop, do while– loop; arrays; log and expressions, structures: switch, break and continue statements.	ons; input and
	C PROGRAMMING	(06 Hours)
	C Language: functions; structures; pointer data type; random and sequential files, file handl	ing in C.
	NUMERICAL METHOD FOR FINDING ROOTS OF EQUATION	(06 Hours)
	Error in Numerical Calculation, Errors and their computations, Absolute, relative and per- general error formula Solutions of Algebraic and Transcendental Equations, Bi-Section Met Method, Regular False, Newton Raphson Method.	
	NUMERICAL INTERPOLATION AND POLYNOMIAL CURVE FITTING	(07 Hours)
	Interpolation, Finite Difference, Forward difference, backward difference, Central Differ interpolation formula, Lagrange interpolation formula, Least Square Fitting Method & Cu polynomials.	
	NUMERICAL METHOD FOR INTEGRATION AND ORDINARY DIFFERENTIAL EQUATIONS	(08 Hours)
	Numerical Integration, Newton-Cote's formula, Trapezoidal, Simpson 1/3rd and 3/8th r Weddle rules.	ule and

B.Tech. (Engineering Physics)

Numerical Solutions of Ordinary Differential Equations: Euler, Picard and Taylor ser Kutta 2nd order and 4th order method.	ries methods,Runge-
C PROGRAMMING PRACTICE	(08 Hours)
C Programs: Program writing in C for interpolation, integration, roots of equations, n solution of differential equations. Good programming practices.	natrixdiagonalization,
Practical will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 Hou	rs = 75 Hours)

3.	Practicals
1	Error in numerical computation, error in construction of a model, approximations, Truncationerror and their estimation
2	Solutions of Algebraic and Transcendental Equations using Newton Raphson method.
3	Interpolation using Lagrange's formula.
4	Linear square fitting and Curve fitting by polynomials method.
5	Numerical Integration using Simpson 1/3 rd method.
6	Numerical Solutions of Ordinary Differential Equations using Runge–Kutta Method.
7	Writing and testing C program for Error calculation.
8	Writing and testing C program for Newton Raphson method.
9	Writing and testing C program for Lagrange's formula.
10	Writing and testing C program for Curve fitting.
11	Writing and testing C program for Simpson 1/3 rd method.
12	Writing and testing C program for Runge–Kutta Method.

4.	Books Recommended
1	Chapra S. C. and Canale R. P., Numerical Methods for Engineers. 7 th Edition, TataMcGraw Hill, 2021.
2	Sastry S. S., Introductory Methods of Numerical Analysis, 2 nd Edition, PHI, 2012.
3	Hoffman J. D., Numerical Methods for Engineers and Scientist, 2 nd Edition, CRC Press, 2018.
4	Xavier C., C Language and Numerical Methods, 2 nd Edition, New Age publishers, 2007.
5	Herbert Scheldt, C: The Complete Reference, 4 th Edition, McGraw Hill Education, 2018.

B.Tech. (Engineering Physics)

First Year of Four Years of B. Tech. (Engineering Physics) B. Tech I, Semester - I	Scheme	L	Т	Р	Credit
MATHEMATICS FOR PHYSICAL SCIENCES-I MA123		3	1	0	4

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Explain the basic concept of ordinary differential equation with its different forms and methods.
CO2	Discuss the related Applications in Mathematical Modelling and with knowledge of Ordinarydifferential equations, can resolved here.
CO3	Narrate about the series solution and Frobenius series solution with different point.
CO4	Illustrate the PDE with linear and Non-linear equations and its solution.
CO5	Discuss the Vector calculus and System of Linear Algebraic equations.

2.	Syllabus				
	ORDINARY DIFFERENTIAL EQUATION	(10Hours)			
	Reorientation of differential equation first order first degree, exact differential equation and Integ factors, first order higher degree odes, solvable for p, y and x, Solution of homogenous equations order, complementary functions, Particular Integrals, Linear differential equation with variable coeff Cauchy's Euler and Legendre's equation with variable coefficient, Method of variation of parameters.				
	APPLICATION OF DIFFERENTIAL EQUATION (MATHEMATICAL MODELLING) (07 Hours Modeling of Real world problems particularly Engineering System, Electrical network models (LCR), spreat of epidemic (SI, SIS, SIR), Newton's Law of cooling. Single compartment modelling, Bending of beam models. Image: Compartment modelling, Bending of States and				
	SERIES SOLUTION AND SPECIAL FUNCTIONS	(07 Hours)			
	Regular point, Singular point, series solution of ODE of 2nd order with variable coefficient with special emphasis to differential equation of Legendre's and Bessel's for different cases of roots of indicial equations.				
	INRODUCTION TO PARTIAL DIFFERENTIAL EQUATION	(08 Hours)			
	Introduction to Partial differential equation, Formation of partial differential Equation, Partial differential Equation of first order, Linear partial differential equation of first order (Pp+Qq-R) and method of obtaining its general solution, Non-linear partial differential equation of first order f(p, q)=0, f(z, p, q)=0, f(x, p)=g(y,q), z=px + qy + f(p,q).				
	VECTOR CALCULUS	(07 Hours)			
	Scalar and vector point function, differential operator, gradient, directional derivative Laplacian operator with their properties, Line integral, Surface Integral, Volume int and Stokes theorem (Only statement) & application.				

B.Tech. (Engineering Physics)

SYSTEM OF LINEAR ALGEBRIC EQUATION	(06 Hours)		
Linear systems, Elementary row and column transformation, rank of matrix, consistency of linear system equations, Linear Independence and Dependence of vectors, Gauss Elimination method, Gauss-Jorden Method, Gauss-Jacobi Iteration Method			
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)		
(Total Contact Time: 45 Hours	+ 15 Hours = 60 Hours		

3.	Tutorials
1	Tutorial one will be related to Ordinary differential equations.
2	Tutorial two, also will be on ordinary differential equations with variable co-efficient.
3	Tutorial three will be on different examples of ordinary differential equations.
4	Tutorial four will be on Mathematical modelling.
5	Tutorial five will be on Series solution and other special cases of it.
6	Tutorial six will cover partial differential equations.
7	Tutorial seven will be on examples of partial differential equations.
8	Tutorial eight will be on Vector Calculus.
9	Tutorial nine will be on applications of Area, Volume.
10	Tutorial ten will be on system of linear algebraic equations

4.	Books Recommended
1	Kreyszing E., Advanced Engineering Mathematics, John Wiley & Sons, Singapore, Int Student Ed. 2015.
2	James Steward De, Calculus, Thomson Asia, Singapore, 2003.
3	O'Neel Peter., Advanced Engg. Mathematics, Thompson, Singapore, Ind. Ed. 2002.
4	Hilderband, F. B., Methods of Applied mathematics, PHI, New Delhi, 1968
5	Wiley C. R., Advanced Engineering Mathematics, McGraw Hill Inc., New York Ed. 1993,
	Reference Books
1	Ramana D. V., Higher Engg. Mathematics, The MaGraw-Hill Inc., New Delhi, 2007.
2	Hay George E., Vector and Tensor Analysis. Dover Publications, 2012.
3	Srimanta Pal, Subodh C. Bhunia, Engineering Mathematics, Oxford University Press, New Delhi, 2015.
4	Boas.Mary L., Mathematical Methods in the Physical Sciences, John Wiley & Sons, Ed. 2005.
5	Kapur. J. N., Mathematical Models in Biology and Medicine. East west Press, New Delhi 1985.

B.Tech. (Engineering Physics)

First Year of Four Years of B. Tech. (Engineering Physics) B.Tech. I /M.Sc. I: Semester I/ II	Scheme	L	т	Р	Credit
INDIAN VALUE SYSTEM AND SOCIAL CONSCIOUSNESS HS120		2	0	0	2

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	interpret the important values that need to be cultivated
CO2	analyse the cultures depicted in Ramayana, Mahabharata, Jainism and Buddhism
CO3	review the structure of Indian knowledge system
CO4	discuss the significance of constitution of India
CO5	demonstrate social responsibility

2.	Syllabus				
	HUMAN VALUES AND CONSCIOUSNESS				
	Human Values Definition and Classification of Values; The Problem of Hierarchy of Values and their Choice; Self-Exploration; 'Basic Human Aspirations; Right understanding, Relationship and Physical Facility; fulfilment of aspirations; Understanding Happiness and Prosperity, Harmony at various levels. What Is Consciousness?; Can We Build A Conscious Machine?; Levels Of Consciousness; Mind, Matter And Beyond; Holistic Lifestyle; Dealing With Anxiety; Connecting Mind To Brain; Minds, Brains, And Programs.				
	INDIAN CULTURE AND HERITAGE (07 Hours)				
	Culture and its salient features: The Vedic – Upanishadic Culture and society, Human aspirations in those societies; Culture in Ramayana and Mahabharata: The Ideal Man and Woman, Concepts Maitri, Karuna Seela, Vinaya, Kshama, Santi, Anuraga – as exemplified in the stories and anecdotes of the Epics; The Culture of Jainism: Jaina conception of Soul, Karmaand liberation, Buddhism as a Humanistic culture; The four Noble truths of Buddhism; Vedanta and Indian Culture;				
	INDIAN KNOWLEDGE SYSTEM	(08 Hours)			
	Indian knowledge as a unique system, Place of Indian knowledge in mankind's evolution, Relevance of Indian knowledge to present day and future of mankind, Nature of Indian Knowledge; Structure of Indian Knowledge: Types of knowledge (para, apara), The scientific and the unscientific, Instruments for gaining and verifying knowledge, Knowledge traditions: Lineages, Instruments - debate, epistemology and pedagogy, The inverted tree – axiomatic, deductive, empirical knowledge, and evolution of knowledge; Disciplines of Study: A brief outline of				

B.Tech. (Engineering Physics)

the subjects, the major contributions and theories along with timelines where releve Astronomy; Physical Sciences; Cosmogony; Language studies; Astrology; Moral studies; Astrology; Moral studies; Astrology; Moral studies; Astronomy; Cosmogony; Language studies; Astrology; Moral studies; Astronomy; Moral studies; Astronomy; Moral studies; Astronomy; Moral studies; Astronomy; Moral studies; Astronom; Moral studie; Moral studies; Astronom; Moral studies; Astronom; Moral				
INDIAN CONSTITUTION	(04 hours)			
History of Making of the Indian Constitution; Philosophy of the Indian Constitution: Preamble; Salient Features; Contours of Constitutional Rights & Duties; Organs of Governance: Parliament; Composition; Qualifications and Disqualifications; Powers and Functions				
SOCIAL RESPONSIBILITY	(03 Hours)			
Social Responsibility: Meaning and Importance, Different Approaches of Social Responsibility. Social Responsibility of Business towards different Stakeholders. Evolution and Legislation of CSR in India.				
(Total Con	tact Time: 30 Hours)			

3.	Books Recommended
1	D. K. Chaturvedi, Professional Ethics Values and Consciousness, Ane Books Pvt. Ltd., 2023.
2	R.R. Gaur, R Sangal, G. P. Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010.
3	A.N. Tripathi, Human Values, New Age Intl. Publishers, New Delhi, 2004.
4	P R Rao, Indian Heritage and Culture, Sterling Publishers Pvt. Ltd, 1988.
5	D. Singh, Indian Heritage and Culture, APH Publishing Corporation, 1998.
6	Sri Prashant Pole, Treasure Trove of Indian knowledge, Prabhat Prakashan, 2021.
7	Sri Suresh Soni, Sources of our cultural heritage, Prabhat Prakashan, 2018.
8	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

B.Tech. (Engineering Physics)

First Year of Four Years of B. Tech. (Engineering Physics)	Scheme	L	т	Р	Credit
B. Tech I, Semester - II					
BASICS OF ELECTROMAGNETICS		2	1	0	4
EP102		3	L	U	4

1.	Course Outcomes: At the end of the semester students will be able to
CO1	Outline briefly the basics of vector algebra, various coordinate systems and differential calculus.
CO2	Explain the Coulomb's law and Gauss's law and their applications in electrostatics.
CO3	Classify the electric fields in conductors and dielectrics and extend it to understand the polarization effects and apply to boundary value problems.
CO4	Explain the Ampere's law and related aspects, and their applications in magnetostatics.
CO5	Explain the magnetic fields in matter and examine magnetization in linear and nonlinear media.

2.	Syllabus				
	VECTOR CALCULUS	(06 Hours)			
	Vector Algebra, Coordinate Systems and Transformations, Differential Length, Differential Area and Differential Volume; Line, Surface and Volume Integrals, Gradient, Divergence, Curl and Laplacian (Cartesian & Polar Coordinates)				
	ELECTROSTATICS	(06 Hours)			
	Coulomb's Law, Intensity of Electric field, Gauss's Law and its Application, Divergence and curl of E Field, Electric Potential, Work and Energy in Electrostatics.				
	SPECIAL TECHNIQUES	(08 Hours)			
Laplace's equation, The method of images, Separation of variables, Multipole expansion					
	ELECTRIC FIELDS IN MATTER	(08 Hours)			
	Polarization, The Field of a Polarized Object, The electric Displacement, Linear D	ielectrics			
	MAGNETOSTATICS	(08 Hours)			
	The Lorentz Force Law, The Biot-Savart Law, The Divergence and Curl of B, Applications of Ampere's Magnetic Vector Potential				
	MAGNETIC FIELDS IN MATTER	(08 Hours)			
	Magnetization – Diamagnets, Paramagnets, Ferromagnets, The field of a Magne	tized Object, The			

B.Tech. (Engineering Physics)

•	Tutorials will be based on the coverage of the above topics separately	(15 Hours)
	Auxiliary Field H, Linear and Nonlinear media,	

3.	Tutorials
1.	Numerical problems based on vector algebra, various coordinate systems and differential calculus.
2.	Problems related to the calculation of electric fields and potentials using coulomb' law and Gauss's law.
3.	Numerical problems based on Laplace's equation, The method of images.
4.	Numerical Problems related to Separation of variables, Multipole expansion.
5.	Problems for the calculation of polarization and fields due to a polarized objects.
6.	Problems related to electric displacement and the calculation of energy and forces in dielectric systems.
7.	Problems based on the Lorentz force law, the Biot-Savart Law and Ampere's law.
8.	Problems based on magnetic vector potentials.
9.	Problems for the calculation of magnetization and the field due to a magnetized object.
10.	Numerical exercise for the calculation of the Auxiliary field H and other problems based on linear and nonlinear media.

4.	Books Recommended
1.	Griffiths D. J., Introduction to Electrodynamics, 3 rd Edition, Pearson Education, 2008.
2.	Jackson J. D., Classical Electrodynamics, 3 rd Edition, Wiley, 2018.
3.	Sadiku M.N.O., Elements of Electromagnetics, 6 th Edition, Oxford university press, 2014.
4.	Landau L. D., Lifshitz E. M., The Classical Theory of Fields, Course of Theoretical Physics: Vol. 2, 3 rd Edition Pergamon Press, 1967.
5.	Edminister J. A., Schaum's Outline series, Theory and Problems of Electromagnetics, McGraw Hill, 1993.

B.Tech. (Engineering Physics)

First Year of Four Years of B. Tech. (Engineering Physics)	Scheme	L	т	Р	Credit
B. Tech I, Semester - II					
SEMICONDUCTOR PHYSICS EP102		3	1	0	4

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Understand the working of various FET devices and their applications.
CO2	Understand the principle of operation of DIAC and TRIAC devices.
CO3	Identify the principle of operation and structure of SCR devices.
CO4	Interpret the concept of heterojunction devices and their applications.
CO5	Classify the characteristics of various photonic devices.
CO6	Examine the properties and applications of microwave devices.

2.	Syllabus				
	INTRODUCTION	(06 Hours)			
	Semiconductor Fundamentals, intrinsic & extrinsic semiconductors, free carrier and carrier concentration and Fermi-level. Scattering and Drift, Mobility, Hall Effect, excess carriers, Metal Semiconductor Contacts (Schottky and Ohmic), Schottky barriers; Schottky barrier height, C-V characteristics, current flow across Schottky barrier: thermionic emission				
	VARIOUS FET DEVICES: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(09 Hours)			
	Types of FET, JFET, MODFET, SIT, MOSFET, Structure and principle of operation of MOSFET, MOSFETas an amplifier, MOSFET analysis, Threshold voltage. Power MOSFET, HEMT, Compare JFET and BJT-List the merits of JFET over BJT, Principle of operation of CMOSFET.				
	DIAC, TRIAC: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(06 Hours)			
	Structure of DIAC, DIAC Principle of operation, Structure, and principle of operation of TRIAC, Applications of TRIAC.				
	PNPN: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(06 Hours)			
	The silicon-controlled rectifier, Device structure, Principle of operation, Equivalent circuit, Applications.				
	INTRODUCTION TO THE HETERO JUNCTIONS AND APPLICATIONS	(06 Hours)			
	Concept of Heterojunction, Multilayer Heterojunction, Energy band diagram for Heterojunction Confinement of charge carrier, Application of Heterojunction.				
	PHOTONIC DEVICES: INTRODUCTION, CHARACTERISTICS AND APPLICATION				

B.Tech. (Engineering Physics)

 Light Emitting Diode (LED), Characteristics of LED, Materials and wavelength of light, Laser diode, Structure, Characteristics of laser diode, Photodiode and solar cell, Display devices, Operation of LCDs, LED, HDTV, Plasma displays.

 MICROWAVE DEVICES: INTRODUCTION, CHARACTERISTICS AND APPLICATION
 (06 Hours)

 MESFET, HEMT
 Tutorials will be based on the coverage of the above topics separately
 (15 Hours)

 (Total Contact Time: 45 Hours + 15 Hours = 60 Hours)
 (15 Hours)

3.	Tutorials
1.	Study of the characteristics of Unijunction Transistor (UJT) and to calculate interbase resistance and intrinsic standoff ratio.
2.	To study the VI characteristic of TRIAC with positive and negative biasing and plot the curve between V $\&$ I.
3.	To study the phenomenon of holding current and latching current in TRIAC.
4.	To study the RC Phase shift oscillator using BJT.
5.	To study the VI characteristic of DIAC with positive biasing and plot the curve between V & I.
6.	Study and plot V-I characteristic of SCR.
7.	To study the phenomenon of holding current and latching current in SCR.
8.	To study the triggering of SCR using OP-AMP 741 and to study the application of SCR in alarm circuit.
4.	Books Recommended

4.	Books Recommended
1.	Schilling D.L. and Belove C., Electronic Circuits: Discrete and Integrated, McGraw Hill, 1989.
2.	Streetman B. and Banerjee S., Solid State Electronic Devices, Prentice Hall, 2005.
3.	Boylestad R.L. and Nahselsky L., Electronic Devices and Circuit Theory, Prentice Hall, 2005.
4.	Liao S.Y., Microwave Devices and Circuits, Prentice Hall, 1996.

B.Tech. (Engineering Physics)

First Year of Four Years of B.Tech. (Engineering Physics) B.Tech I, Semester - II	Scheme	L	т	Р	Credit
INTRODUCTION TO PYTHON PROGRAMMING EP106		3	0	2	4

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Learn the basics of programming and create your first program in Python IDLE.
CO2	Implement Conditional Statement concepts in your programming.
CO3	Use different Python Libraries and Create an application with the support of graphics in Python.
CO4	Write code using functions, files, and exception handling.
CO5	Implement Python to Physics and Machine Learning problems.

2.	Syllabus			
	INTRODUCTION	(08 Hours)		
	Introduction: The Programming Language, History, features, Debugging: Syntax Errors, Semantic Errors, Experimental Debugging, Formal and Natural Languages	Runtime Errors,		
	Features of Python, Python installation and setup, Python IDLE and basic operations, Wr Python programs, Variables and data types, Basic operations, Input/output operations	iting and executing		
	CONDITIONAL STATEMENTS	(08 Hours)		
	Conditional Statements: if, if-else, nested if-else Looping: for, while, nested loops Cont Terminating loops, skipping specific conditions	rol statements:		
	INTRODUCTION TO POPULAR PYTHON LIBRARIES	(07 Hours)		
	Introduction to popular Python libraries (e.g., NumPy, Pandas, Matplotlib), Introduction and visualization in Python, working with data using Python libraries (e.g., Pandas, Mat			
	GUI Programming With Tkinter, import the module – Tkinter, create the main windo any number of widgets to the main window, and apply the event trigger on the widget			
	OVERVIEW OF LISTS, TUPLES AND DICTIONARIES	(10 Hours)		
	Lists: Values and Accessing Elements, Lists are mutable, traversing a List, Deleting elements from List, Built- in List Operators, Concatenation, Repetition, In Operator, Built-in List functions and methods			
	Tuples and Dictionaries: Tuples, accessing values in Tuples, Tuple Assignment, Tuple Variable-length argument tuples, Basic tuples operations, Concatenation, Repetit Iteration, Built-in Tuple Functions Creating a Dictionary, Accessing Values in a die Dictionary, Deleting Elements from Dictionary, Properties of Dictionary keys, Operat Built-In Dictionary Functions, Built-in Dictionary Methods.	Repetition, in Operator, in a dictionary, Updating		
	FILE HANDLING and INTRODUCTION TO ML & AL	(12 Hours)		
	Files: Text Files, The File Object Attributes, Directories Exceptions: Built-in Exc Exceptions, Exception with Arguments, User-defined Exceptions.	eptions, Handling		
	Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject,			

SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. (Engineering Physics)

Introduction to machine learning and its applications, Introduction to popular Python libraries for machine learning (e.g., scikit-learn, TensorFlow).

Practical will be based on the coverage of the above topics separately.

(30 Hours)

(Total Contact Time: 45 Hours + 30 Hours= 75 Hours)

3.	Practical
1	Program to calculate the sum and average of a list of numbers using functions.
2	Write a program that prints a giant letter A like the one below. Allow the user to specify how large the letter should be.
3	Program to read data from a CSV file using the Pandas library and perform data analysis.
4	Program to plot & save graph of sine wave and cosine wave using Matplotlib.
5	Program to create a class representing a student and calculate their grades based on specific criteria.
6	Program to calculate the mean, median, and mode of a list of numbers using NumPy and statistics.
7	Program to implement linear regression using the scikit-learn library for a given dataset.
8	Program to calculate the roots of a quadratic equation using the math library.
9	Program to compute the derivative of a given function using symbolic mathematics with SymPy.
10	Program to calculate the eigenvalues and eigenvectors of a matrix using NumPy.

4.	Books Recommended:
1	Zhang Y., An Introduction to Python and Computer Programming, Springer Verlag, Singapore, 2015
2	Langtangen H.P., A Primer on Scientific Programming with Python, Springer, 2016.
3	Ham, D. A., Object-oriented Programming in Python for Mathematicians Paperback, 2023.
4	Johansson R., Numerical Python: Scientific Computing and Data Science Applications with NumPy, SciPy, and Matplotlib, Apress, 2019.
5	Fuhrer C., Solem, J.E. and Verdier O., Scientific Computing with Python: High-performance scientific computing with NumPy, SciPy, and Pandas, Packt Publishing Limited, 2021.

B.Tech. (Engineering Physics)

First Year of Four Years of B.Tech. (Engineering Physics) B.Tech I, Semester – II	Scheme	L	т	Р	Credit
MATHEMATICS FOR PHYSICAL SCIENCES -II MA118		3	1	0	4

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Explain about infinite series.
CO2	Discuss the Fourier series and periodic functions and with different period.
CO3	Narrate the Fourier transform and theorems.
CO4	Explain Complex Variables.
CO5	Illustrate basic of statistics and sampling theory and estimation.

2.	Syllabus				
	INFINITE SERIES	(05 Hours)			
	Introduction, Positive term series, Comparison test, Cauchy's root test, D'Alembe Logarithmic test, Integral test, Gauss's test.	ert's test, Raabe'stest,			
	FOURIER SERIES	(07 Hours)			
	Definition, Fourier series with arbitrary period, in particular periodic function with period 2 π . Fourier series of even and odd function, Half range Fourier series.				
	FOURIER TRANSFORM AND FOURIER TRANSFORM OF AN INTEGRAL	(07 Hours)			
	Fourier transform and its operational properties, Fourier Integral theorem, solution, transform of derivatives, Inversion formula for Fourier transforms.	Fourier Cosine and			
	COMPLEX VARIABLES	(06 Hours)			
	Basic mathematical concept, Analytic function, Cauchy – Riemann equations, Harmonic functions, its applications, Linear transformation of complex domain, bilinear transformations, conformal mapping and its application, complex integration over closed contour.				
	BASIC OF STATISTICS AND PROBABILITY DISTRIBUTION	(a.a.,)			
		(06Hours)			
	Reorientation of random experiments, events, probability and its distributions of their properties and Normal distribution, jointly distributed random variables, exp of random variable moments, moment generating functions.	Binomial & Poisson "s,			
	their properties and Normal distribution, jointly distributed random variables, exp	Binomial & Poisson "s,			
	their properties and Normal distribution, jointly distributed random variables, exp of random variable moments, moment generating functions.	Binomial &Poisson"s, bectedvalues, function (07 Hours) bution, Sample mean,			

B.Tech. (Engineering Physics)

Sampling and Test of significance, Statistical hypothesis and significance, Type I and Type II errors, Test of significance. Level of Significance, single tail and two tail tests hypothesis Chi-square (2 χ) test, student's t Test of significance of the mean of a random sample, t-test for difference of means of two small samples, Snedecor^ws variance ratio test or F-test and tis applications.

Tutorials will be based on the coverage of the above topics separately (1

(15 Hours)

(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)

3.	Tutorials
1.	Tutorial one will be related to infinite series.
2.	Tutorial two will be on different test of infinite series for its convergence.
3.	Tutorial three, will be on Fourier series.
4.	Tutorial four will be on Fourier transform.
5.	Tutorial five will cover examples of Fourier integral theorem.
6.	Tutorial six will be on Complex variables.
7.	Tutorial seven will cover basic of statistics.
8.	Tutorial eight will be based on Probability Distribution.
9.	Tutorial nine will be based on Sampling theory.
10.	Tutorial ten will be on Estimation: different test and its applications.

4.	Books Recommended
1.	Kreyszing E., Advanced Engineering Mathematics, John Wiley & Sons, Singapore, Int. Student Ed. 1995.
2.	Wiley C. R., Advanced Engineering Mathematics, McGraw Hill Inc., New York Ed. 1993
3.	O"Neil Peter., Advanced Engg. Mathematics, Thompson, Singapore, Ind. Ed. 2002.
4.	Greenbar Michael D., Advanced Engg. Mathematics, Pearson, Singapore, Ind. Ed. 2007.
5.	Ramana D. V., Higher Engg. Mathematics, The MaGraw-Hill Inc., New Delhi, 2007.

B.Tech. (Engineering Physics)

First Year of Four Years of B.Tech. (Engineering Physics) B.Tech I/ M.Sc I, Semester – I/II	Scheme	L	т	Р	Credit
ENGLISH AND PROFESSIONAL COMMUNICATION HS110		3	1	0	4

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	show enhanced reception towards the use of English language.
CO2	choose and employ appropriate words for professional communication.
CO3	develop sentences and text in English coherently and formally.
CO4	demonstrate overall improvement in oral communication.
CO5	analyze and infer from written and oral messages.

2.	Syllabus	
	COMMUNICATION	(05 Hours)
	Introduction to Communication, Different forms of Communication, Barriers to Commun remedies, Non-Verbal Communication – Types, Non-Verbal Communication in Intercult	
	VOCABULARY AND USAGE OF WORDS	(05 Hours)
	Common Errors, Synonyms, Antonyms, Homophones, and Homonyms; One Window Misappropriations; Indianisms; Redundant Words.	ord Substitution;
	LANGUAGE THROUGH LITERATURE	(09 Hours)
	Selected short stories, essays, and poems to discuss nuances of English language.	•
	LISTENING AND READING SKILLS	(06 Hours)
	Types of listening, Modes of Listening-Active and Passive, Listening and note taking	aractico Bractico
	and activities. Reading Comprehension (unseen passage- literary /scientific/technical) Skimming and opinion, Comprehension practice	
	and activities. Reading Comprehension (unseen passage- literary /scientific/technical) Skimming and	
	and activities. Reading Comprehension (unseen passage- literary /scientific/technical) Skimming and opinion, Comprehension practice	scanning, fact vs (10 Hours)
	and activities. Reading Comprehension (unseen passage- literary /scientific/technical) Skimming and opinion, Comprehension practice SPEAKING SKILLS Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Interviews-1	scanning, fact vs (10 Hours)
	and activities. Reading Comprehension (unseen passage- literary /scientific/technical) Skimming and opinion, Comprehension practice SPEAKING SKILLS Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Interviews- 1 and mock interview; Group Discussion- types, preparation and practice.	scanning, fact vs (10 Hours) types, preparation (10 Hours)
	 and activities. Reading Comprehension (unseen passage- literary /scientific/technical) Skimming and opinion, Comprehension practice SPEAKING SKILLS Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Interviews-tand mock interview; Group Discussion- types, preparation and practice. WRITING SKILLS Prerequisites of effective writing, Memo-types, Letter Writing- types, Email etiquett 	scanning, fact vs (10 Hours) types, preparation (10 Hours)

3.	Tutorials
1	Letter and Resume
2	Group Discussion
3	Presentation Skills (Individual)
4	Role Play on Nonverbal communication
5	Group Presentation
6	Debate
7	Body language and intercultural communication
8	Listening Activities
9	Editing
10	Report Writing
11	Mock interviews
12	JAM

4.	Books Recommended
1	Kumar, Sanjay and Pushp, Lata. Communication Skills, 2 nd Edition, OUP, New Delhi, 2015.
2	Raman, Meenakshi & Sharma Sangeeta. <i>Technical Communication Principles and Practice</i> , 3 rd Edition, OUP, New Delhi, 2015.
3	Raymond V. Lesikar and Marie E Flatley. <i>Basic Business Communication skills for Empowering theInternet generation.</i> Tata McGraw Hill publishing company limited. New Delhi 2005.
4	Courtland L. Bovee, John V. Thill, and Mukesh Chaturvedi. "Business Communication Today." NinthEdition. Pearson, 2009.
5	Mike Markel. "Practical Strategies for Technical Communication," Bedford/ St. Martin's SecondEdition, 2016
6	Laura J. Gurak and John M. Lannon. "Strategies for Technical Communication in the Workplace," Pearson, 2013.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Curriculum SVNIT Surat (XXth Senate, XX XYZ 2024)