Department of Electronics Engineering Proposed Revised Curriculum Structure as per NEP2020 B. Tech. Electronics and VLSI Engineering

Sr.	Subject	Code	Schemes	Credits	Notional
INO.	Somostor				nours
1	Semester Mandatory Coro	\/ 201	202	04	ØE
T	Somicanductor IC Tachnology	VLSUI	5-0-2	04	65
2	Mandatory Core	1/1 202	202	04	OE
2		VLSUS	5-0-2	04	65
2		1/1277	202	04	QE
3			3-0-2	04	65 EE
4	Elective – II		3-0-0	03	55
5		VL3XX	3-0-0	03	55
6	Project Phase – I	VL305	0-0-4	02	/0
-		quirement	Iotal	20	435
/	Minor / Honor (M/H#2)	EC3AA	3-0-2	4/5	/0/85
8	Vocational Training/Professional Experience	ECV05/	0-0-8	04	160
	(Optional) (Mandatory for Exit)	ECP05			(20x8)
Sixt	h Semester		1	1	r
1	Mandatory Core	VL302	3-0-2	04	85
	Analog VLSI Design				
2	Mandatory Core	VL304	3-0-2	04	85
	VLSI System Design				
3	Elective – III	VL3XX	3-0-2	04	85
4	Elective – IV	VL3XX	3-0-0	03	55
5	Institute Elective – II	VL3XX	3-0-0	03	55
6	Project Phase – II	VL306	0-0-4	02	70
7	MOOC*	VL3XX	3-0-0	03	55
	Minimum Credit Re	Minimum Credit Requirement To		23	490
8	Minor / Honor (M/H#3)	EC3AA	3-0-2	4/5	70/85
9	Vocational Training / Professional Experience	ECV06/	0-0-8	04	160
	(Optional) (Mandatory for Exit)	ECP06			(20x8)
		-			

*NPTEL, SWAYAM and other Massive Open Online Courses (MOOC) approved by DAAC. As per 66th IAAC, Dated 20th March 2024, Resolution No. 66.34 and 61st Senate resolution No. 4, 25th April, 2024

Subject Pool:

B. Tech. EC Elective -I (3-0-2)					
Sr. No.	Subject	Code	Scheme	Credits	
1	Computer Architecture and Organization	VL321	3-0-2	4	
2	Embedded Systems	VL323	3-0-2	4	
3	Data Communication Networks	EC321	3-0-2	4	

B. Tech. EVL Elective -II (3-0-0)				
Sr. No.	Subject	Code	Scheme	Credits
1	Semiconductor Device Modelling	VL341	3-0-0	3
2	Hardware Description Language	VL343	3-0-0	3

B. Tech. EVL Institute Elective – I (3-0-0)				
Sr. No.	Subject	Code	Scheme	Credits
1	Sensors and Transducers	EC361	3-0-0	3

B. Tech. EVL Elective -III (3-0-2)				
Sr. No.	Subject	Code	Scheme	Credits
1	Real-Time systems	VL322	3-0-2	4
2	VLSI Architecture for DSP	VL324	3-0-2	4

B. Tech. EVL Elective -IV (3-0-0)				
Sr. No.	Subject	Code	Scheme	Credits
1	Foundation of VLSI CAD	VL342	3-0-0	3
2	Memory Technology	VL344	3-0-0	3
3	Low Power VLSI Design	VL346	3-0-0	3
4	IoT and Applications	EC344	3-0-0	3

B. Tech. EVL Institute Elective – II (3-0-0)				
Sr. No.	Subject	Code	Scheme	Credits
1	Solar Photovoltaic Technology	VL362	3-0-0	3
2	Semiconductor Packaging	VL364	3-0-0	3

B.Tech. III (VL) Semester V SEMICONDUCTOR IC TECHNOLOGY		L	т	Ρ	Credit
VL301		3	0	2	04

1.	Course O	utcomes (COs):	
	At the en	d of the course the students will be able to:	
	CO1	Describe and analyze material processing techniques and Pattern Transfer proc	cess
	CO2	Explain, and compare the concept behind thin film deposition, and cha	racterization
		techniques.	
	CO3	Describe, and compare metal contact formation, interconnect, bonding and pa	ckaging.
	CO4	Demonstrates different fabrication, characterization, and metallization techniq	ues.
	CO5	Design basic semiconductor devices and their characterization.	
2.	Syllabus:		
	INTRODU	ICTION TO MICROELECTRONIC FABRICATION AND MATERIALS	(08 Hours)
	Semicono	luctor substrate : Crystal structure, Crystal defects, Crystal growth, Wafer fabrica	tion and basic
	propertie	s of Silicon Wafers, Wafer cleaning, and native oxide removal, Substrates be	eyond Silicon,
	Surface re	eactions, Dopants, Defects in epitaxial growth, Clean Room, and Safety requirem	ents.
	Diffusion,	Thermal Oxidation, Ion implantation, Etching.	
	MASK FA	BRICATION AND ADVANCED LITHOGRAPHY TECHNIQUES	(06 Hours)
	Overview	, Optical lithography, Photoresist, Mask Development, Patterning Strategies, E	lectron beam
	lithograpl	hy process, EUV Lithography, X-ray lithography, and Other advanced lithography	systems
	THIN-FILM	M TECHNOLOGIES	(09 Hours)
	Physical \	/apor Deposition: Evaporation Systems, Sputtering systems, and state-of-art Sys	tems
	Chemical systems	Vapor Deposition: CVD system, Advanced CVD systems: LPCVD, UHCVD, AACVD,	and advanced
	Epitaxial	Deposition: MOCVD, MBE, and CBE.	
	Solution- Depositio	Based Deposition Techniques : Electrodeposition, Spin Casting, Printing, L n, Colloidal Synthesis.	ayer-by-Layer
	MEMS FA	BRICATION TECHNIQUES	(05 Hours)
	Silicon Pr Etching a	ressure Sensors, Micro-Electro-Mechanical Systems, Micromachining Techniq nd Anisotropic Etching, Wafer Bonding, and LIGA Processes.	ues, Isotropic
	NANOSC	ALE DEVICE CHARACTERIZATION TECHNIQUES	(08 Hours)
	X-ray diffi	raction, X-ray photoelectron Spectroscopy, Spectroscopic Ellipsometry, Field Emis	ssion Scanning
	Electron	Microscope, Transmission Electron Microscope, Atomic Force Microsco	cope, Raman
	Spectroso Measurer	ору, UV-Vis Measurement, Photo-Luminescence, Hall Measurement, Capaci ment and Current-voltage measurement.	tance Voltage
	PROCESS	INTEGRATION	(05 Hours)
	Contacts	and metallization: Junction and oxide isolation, Si on insulator, Schottky and Ol	nmic contacts,
	Multileve	I	metallization.
	CMOS	technologies: Device behavior, Basic 3 µm technologies, Dev	vice scaling.

	Circuit Manufacturing: Yield, Particle control, Design of experiments, computer-integrated manufacturing.
	INTERCONNECTS, BONDING, AND PACKAGING: (04 Hours)
	Metallization, Silicides, CVD Tungsten Plug Process, Gold Wire Bonding and Other Bonding Technologies, Package Types, Assembly Techniques, Package Fabrication Technology, Package Design Considerations.
	(Total Contact Hours: 45)
3.	List of Practical:
	1. Demonstration of processing steps involved in the cleaning of Silicon wafers.
	2. Demonstration of microfabrication processes like oxidation, deposition, patterning, etc.
	3. Demonstration of Thermal CVD deposition system.
	4. Demonstration of DC/RF Sputtering system.
	5. Demonstration of Thermal evaporation setup.
	6. Electrical properties estimation of the thin film materials using Four Probe Hall Effect measurement setup.
	7. Demonstration of Spin Coating and Hydrothermal Process for the material growth.
	 Current-Voltage characteristics measurement using semiconductor parameter analyser for different semiconductor devices.
	9. Demonstration of UV-Visible absorption measurement.
	10. Demonstration of Raman spectrometer measurement.
	11. Simulation of microfabrication processes like oxidation, deposition, patterning, etc. using TCAD
	tool
4.	Books Recommended:
	 Stephen A. Campbell, "The Science and Engineering of Microelectronic Fabrication", 2nd edition Oxford University Press, 2001.
	2. S.M. Sze (Ed), "VLSI Technology", 2nd edition McGraw Hill, 2017.
	3. Hrundle, Evans, Wilson, "Encyclopedia of Material Characterization", Elsevier, 1992
	4. D. K. Schroder, "Semiconductor Material and Device Characterization", Wiley Interscience, 2016
	5. James Plummer, M. Deal and P.Griffin, "Silicon VLSI Technology", Prentice Hall Electronics, 2003.
	6. Plummer, Deal, Griffin, "Silicon VLSI Technology Fundamentals Practice and Modeling", Pearson Education Limited. 2014.
	7. Rao R. Tummala, "Fundamentals of Device and Systems Packaging Technologies and Applications", McGraw-Hill Publications, Second Edition. 2019.
5.	Additional Resources:
	1. Relevant Journals and Conference publications.

B.Tech. III (VL) Semester V VLSI DESIGN	Scheme	L	т	Ρ	Credit
VL303		3	0	2	04

1.	<u>Course (</u>	Dutcomes (COs):
	At the e	nd of the course the students will be able to:
	CO1	Describe VLSI Design flow and circuit characterization for performance estimation.
	CO2	Demonstrate dynamic Logic circuits.
	CO3	Compare different semiconductor memories.
	CO4	Evaluate the circuit performance using Logical efforts.
	CO5	Design arithmetic building blocks (data-path) from the system's perspective along with the design of FSM (Control-path).
2.	<u>Syllabus</u>	<u>:</u>
	INTROD	UCTION OF VLSI DESIGN (06 Hours)
	Historica	al Perspective, Design Hierarchy, Concepts of Regularity, Modularity and Locality, VLSI Design
	Styles,	/LSI Design Flow, Semi-Custom- Full Custom IC Design Flow, Data Path, Control Path
	Program	mable Logic Array, CMOS and Bipolar Transistor Gate Arrays and Their Limitations, Standard
	Cells, FP	GA/CPLD Architecture.
	DYNAM	IC LOGIC CIRCUITS (06 Hours)
	Voltage	Bootstrapping, Synchronous Dynamic Circuit Techniques, Dynamic and High Performance
	Dynamio	CMOS Circuit, Dynamic Latches and Registers.
		CHARACTERIZATION FOR PERFORMANCE ESTIMATION (08 Hours)
	Intercon	nect. Estimation of Interconnect Parasites. Delay Estimation. Logical Efforts and Transistor
	Sizing, P	ower Dissipation, Design Margin, Reliability.
	SEMICO	NDUCTOR MEMORIES (08 Hours)
	Type of Memory	Memories, design and analysis of ROM Cells, Static and Dynamic Read - Write Memories, Peripheral Circuits, Power Dissipation in Memory, Flash Memory
	DESIGN	OF ARITHMETIC BUILDING BLOCKS (12 Hours)
	Data Pat	b Operations: Adders, Shifter, Multiplier, Power and Speed Trade-off in Data-path Structures
	Control	Path and FSM.
	INPUT-C	OUTPUT CIRCUITS (05 Hours)
	ESD Pro	tection, Input Circuits, Output Circuits, Pad Drivers and Protection Circuit, On-Chip Clock
	Generat	ion/Distribution, Latch-up and its Prevention.
		(Total Contact Hours: 45)
3.	List of P	ractical:
	1. Des	sign and simulate CMOS Inverter standard cell using CADENCE.
	2. Lay	out and simulate CMOS Inverter standard cell using CADENCE.
	3. Inti	oduction to Verilog HDL and FPGA.
	4. Im	plementation and Simulation of Logic Gate using Verilog HDL on FPGA
	5. De	ign and Implementation of Half adder and Full Adder using Verilog HDL on FPGA.
	6. De	ign and Implementation of Half subtractor and Full Subtractor using Verilog HDL on FPGA.
	7. De	ign and Implementation of Ripple Carry Adder using Verilog HDL on FPGA.

	8.	Design and Implementation of Multiplexer using Verilog HDL on FPGA.
	9.	Design and Implementation of Flip-Flops using Verilog HDL on FPGA.
	10.	Design and Implementation of Registers using Verilog HDL on FPGA.
	11.	Design and Implementation of Four Bit Up-Down Counter using Verilog HDL on FPGA.
	12.	Design and Implementation of Array Building Blocks.
4.	Boo	ks Recommended:
	1.	Rabaey Jan M., Chandrakasan Anantha and Borivoje Nikolic, "Digital Integrated Circuits (Design
		Perspective)", 2nd Ed., Prentice Hall of India, 2016 (Reprint).
	2.	Kang and Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", Tata McGraw-Hill, 4th
		Edition, 2019
	3.	Baker R. Jacob, Li H. W. & Boyce D. E., "CMOS Circuit Design, Layout And Simulation", Wiley, 4th
		Edition, 2009
	4.	Weste and Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 4th
		Edition, 2020
	5.	Pucknell and Eshraghian: "Basic VLSI Design", Prentice Hall of India, 3rd Edition, 2003

B.Tech. III (VL) Semester V COMPUTER ARCHITECTURE AND ORGANIZATION	Scheme	L	т	Ρ	Credit
VL321		3	0	2	04

1.	<u>Course</u>	Outcomes (COs):						
	At the end of the course the students will be able to:							
	CO1 Identify the functional architecture of computing systems.							
	CO2 Estimate the performance of various classes of machines, memories, pipelined architectures etc.							
	CO3 Compare CPU implementations, I/O methods etc.							
	CO4	Analyze fast methods of ALU, FP, and Control unit implementations.						
	CO5	Implement an instruction encoding scheme for an ISA and Build large memori memories for better performance.	es using small					
2.	Syllabus	<u></u>						
	DESIGN	OF INSTRUCTION SET ARCHITECTURE (ISA)	(11 Hours)					
	Various Addressing Modes and Designing of an Instruction Set, Concepts of Subroutine and Subroutine call and return, Introduction to CPU design, Instruction Interpretation and Execution, the instruction set of a modern RISC processor, including how constructs in high-level languages are realized, concept of pipeline							
	PROCESSING UNIT							
	The representation of both fixed- and floating-point numbers, together with hardware algorithms for fixed-point arithmetic operations; Basic processor organization, ALU sub-system, Data path in a CPU, Instruction cycle, Organization of a control unit - Operations of a control unit, Hardwired control unit, Micro-programmed control unit.							
	MEMOR	RY SUBSYSTEMS	(11 Hours)					
	Memory Hierarchy; Cache memory design, Cache Mapping, Write and Replacement policy, Virtual Memory, A Real-World Example of Memory Management, DMA Controller, Overview of SRAM and DRAM Design; Memory bus between CPU and DDR3/DDR4 based SDRAM, Memory controller for DDR3/DDR4.							
	BUSES A	ND PROTOCOLS	(10 Hours)					
	Introduction to Input/output Processing, Programmed Controlled I/O transfer, Interrupt Controlled I/O transfer, Introduction to serial and parallel Bus systems, Popular bus architecture standard such as IDE, SCSI, ATA, SATA, USB and IEEE 1394, Network component and protocols such as Ethernet and CAN.							
	PRACTIC	CAL WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY	(30 Hours)					
		(Total Contact Time: 45 Hours + 30 Ho	urs = 75 Hours)					

3.	List of Practical:
	1. Implementation of Binary Adders
	2. Implementation of Booth's Multiplier
	3. Implementation of Wallace Tree Multiplier
	4. Implementation of Division Unit
	5. Implementation of Instruction Decoder
	6. Implementation of Datapath with FSM
	7. Implementation of Control Unit - Hardwired Control
	8. Implementation of Control Unit - Microprogrammed Control
	9. ALU Design using existing blocks
	10. Implementation of Cache Memory Design – Direct Mapped
	11. Implementation of Cache Memory Design – Associative Mapped
	12. Overall CPU design
4.	Books Recommended:
	1. David. A. Patterson and John L. Hennessy, "Computer Organization and Design: The
	Hardware/Software Interface", 5th Ed., Morgan-Kaufmann Publishers Inc. 2014
	2. Linda Null and Julia Lobur, "The Essentials of Computer Organization and Architecture", 5th Ed.,
	Jones & Bartlett Learning, 2018
	3. Alan Clements, "Principles of Computer Hardware", 4th Ed., Oxford University Press, 2013
	4. C. Hamacher et al., "Computer organization," 6th Ed., TMH, 2012
5.	Reference Books:
	1. Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", 3 rd Ed.,
	McGraw-Hill, 2013
	2. M. Morris Mano, "Digital Design", 6th Ed., Pearson Education, 2018

B.Tech. III (VL) Semester V EMBEDDED SYSTEMS	Scheme	L	т	Ρ	Credit
VL323		3	0	2	04

1.	Course O	outcomes (COs):							
	At the en	At the end of the course the students will be able to:							
	C01	CO1 Describe ARM processor, its modes, exception handling, instruction pipelining and basic programming							
	CO2 Implement Assembly and C language programming for ARM Cortex-M.								
	CO3	CO3 Analyze 32-bit ARM microcontroller architecture, External Memory, Counters & Timers,							
		Serial Data Input/Output and Interrupts. Design for interfacing Keys, LED/LCD Displays, ADC And DAC							
	CO4	Evaluate concepts of RTOS and its functionalities.							
	CO5	Design a typical cost-effective real-world embedded system with appropriat	te hardware						
		components and software algorithms							
2.	<u>Syllabus:</u>								
	OVERVIE	W OF EMBEDDED SYSTEMS	(06 Hours)						
	Embedde	ed Vs General computing system, Classification of Embedded systems, Ma	ijor applications,						
	Quality A	Attributes of Embedded Systems, Typical components, Embedded softwar	re development,						
	Embedde	ed OS, RISC Vs CISC Architectures							
	ARM CO	RTEX M3/M4 ARCHITECTURE	(10 Hours)						
	Overview of ARM Cortex family, Operation modes and states, Registers, Special Registers, Floating point								
	Registers System c	 Application program status registers, Memory system and MPU, Exception ontrol block, OS support features 	n and interrupts,						
	PROGRA	MMING CORTEX M3/M4IN ASSEMBLY/C	(12 Hours)						
	Assembly Instructions: Data Processing, SIMD and saturating, Multiply and MAC, Packing and unpacking, Floating point, Data conversion, Bit field processing, Compare and Test, Branching, Sleep mode, Memory barrier and other instructions, Assembly and Embedded C programming examples								
	PERIPHE	RAL INTERFACING	(08 Hours)						
	Serial Co PWM	Serial Communication interfacing such as USB, RS485, SPI, I2C, CAN and Ethernet, Motor control with PWM							
	APPLICA	TION PROGRAMMING OF CORTEX M3/M4	(09 Hours)						
	Writing o operation	ptimized ARM assembly/C code, Exception and fault handling routines, Handl ns, Programming for DSP applications (such as Biquad filter, FIR filter, IIR filter	ing floating point , DFT, FFT etc.)						
	PRACTIC	AL WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY	(30 Hours)						
		(Total Contact Time: 45 Hours + 30 H	ours = 75 Hours)						

3.	List of Practical:
	 Write assembly code to perform Arithmetic and Logical operations. Write a assembly language code to multiply 32-bit data stored on R1 and R2 and 64-bit result will generated and stored into R3(H) and R4(L). Please refer the below figure to implement the same. Write assembly language code to program STM32F4(ARM cortex M4) transfer the data with memory Write Assembly language code to perform switch-case on STM32F4 Interface LED with STM32F4 & write embedded C code for the same Interface Switch and LED with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface LCD with STM32F4 & write embedded C code for the same. Interface DAC and ADC with STM32F4 & write embedded C code for the same.
А	11. Mini Project using STM32F4 Books Recommended:
4.	books Recommended.
	 Joseph Yiu, "A definitive guide to the ARM-Cortex M3 and Cortex-M4 Processors", 3rd Ed., Newnes, 2013. ShibuK.V., "Introduction to Embedded Systems", 1st Ed., TMH 2009. Y. Zhu, "Embedded Systems with Arm Cortex-M3 Microcontrollers in Assembly Language and C" E-Man Press LLC, 2014. A.N.Sloss, D.Symes and C. Wright, "ARM System Developer's Guide: Designing and Optimizing System Software", Elsevier, 2004. ARM Cortex M4 Technical Reference Manual.
5.	Reference Books:
	 DVS Murthy, Transducers and Instrumentation, PHI 2nd Edition2013 Gary Johnson / Lab VIEW Graphical Programing II Edition /McGraw Hill 1997.

B.Tech. III (VL) Semester V DATA COMMUNICATION NETWORKS	Scheme	L	т	Ρ	Credit
EC321		3	0	2	04

1.	Course (<u>Dutcomes (COs):</u>				
	At the e	nd of the course the students will be able to:				
	CO1	Understand the basic concepts and technologies used in networking.				
	CO2	Illustrate how data is transmitted over various mediums and assess the perform systems	nance of these			
	CO3	Analyze the performance of various techniques and protocols in a given netw	ork topology,			
		case study and problem solving as per given data.				
	CO4 Implement and simulate basic networking protocols using standard tools.					
	CO5	Create a local area network with specific requirements.				
2.	<u>Syllabus</u>	<u></u>				
	DATA CO	OMMUNICATION AND NETWORKING OVERVIEW	(08 Hours)			
	Compon compari	ents of a Data Communication Network, Data Flow Types, Categories of tope son, Protocols and Standards: Need for Protocols and Standards.	ology and their			
	OSI and Stacks.	TCP/IP Reference Models: Need of Protocol Layering, Layers, Functions of layer	s, and Protocol			
	Transmi	ssion Media: Guided (Twisted Pair, Coaxial, Fiber Optic) vs. Unguided (Wireless,	Satellite).			
	Perform	ance Parameters: Latency, Packet Delivery Ratio, Throughput and Jitter				
	Switching Techniques: Circuit Switching, Packet Switching, and Virtual Circuit Switching.					
	Addresses: Physical Address (MAC Address), IP Addresses, Port Address, Specific Addresses					
	DATA LI	NK LAYER	(12 Hours)			
	Data Lin	k Layer Functions: Framing: Bit Orientated framing and Byte oriented framing.				
	Flow Co repeat P	ntrol and Error Control: Simplest, Stop and Wait, Stop and Wait ARQ, Go back Protocols.	N and Selective			
	Medium Access Control (MAC): Channelization Protocols: FDMA, TDMA and CDMA, Controlled Access Protocols: Reservation, Polling and Token Passing and Random Access Protocols: Pure Aloha, Slotted Aloha, CSMA 1-persistent, non-persistent and p-persistent, CSMA/CD, CSMA/CA.					
	Networking Devices: Hubs, Switches, Bridge: Learning Bridge, Loop Problem in Learning Bridge, Routers, and Gateways.					
	High-Lev	vel Data Link Control (HDLC) Protocol				
	Wired Networks: IEEE 802.3 Standard (Ethernet) and Wireless Networks: IEEE 802.11 Standard.					
	NETWO	RK LAYER	(12 Hours)			
	IPv4 Addressing: Classful and Classless Addressing, Subnetting, and Supernetting, Special Addresses: Network Address, Broadcast Address, Default Gateway Address, Private IP Addresses, Loopback Address, Link-Local Addresses, Multicast Addresses, Reserved Addresses, Private vs. Public IP addresses, Network Address Translation,					
	IPv6 Addresses: IPv6 Address Types, IPv6 Address Scope, Stateless Address Autoconfiguration.					

	Unicast Routing Protocol: Static vs. Dynamic Routing, Intra-Domain Routing: Distance Vector Routing (RIP), Link State Routing (OSPF), Inter-Domain Routing: Path Vector Routing (BGP).						
	IPv4 Protocol: Datagram Format and explanation of its fields.						
	Address Resolution Protocol (ARP), Address Resolution Protocol (RARP), Internet Control Message Protocol (ICMP), Internet Group Management Protocol (IGMP)						
	TRANSPORT LAYER (6 Hours)						
	Transport Layer Protocols: UDP, TCP and SCTP Protocols and underlying concepts (Three-way handshaking, Congestion Control, Flow Control Techniques etc.)						
	APPLICATION LAYER (7 Hours)						
	Network Virtual Terminal (TELNET), File Transfer Protocol (FTP), Hyper Transfer Protocol (HTTP), HTTPS, Network Management - SNMP, Domain Name Server (DNS), URL, WWW, DHCP, BOOTP.						
	Email Architecture: Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), Internet Message Access Protocol (IMAP).						
	PRACTICAL WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY (30 Hours)						
	(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)						
3.	List of Practical:						
	 Study of basic TCP/IP network commands using Command Window/Terminal. Write a SCILAR program to do Rit stuffing and Do Stuffing for all the type. 						
	 Write a SCILAB program to do bit sturning and De-sturning for all the type. Write a SCILAB program to generate Cyclic Redundancy Check (CRC) and Hamming code for Error Correction and Detection 						
	4. Write a SCILAB program to find the shortest path between the Nodes among the given networks.						
	5. Write a SCILAB program to calculate the Bit Error Rate (BER) in data transmission.						
	6. Demonstrate the difference between a Bridge and a Router using Cisco Packet Tracer.						
	7. Simulate Routing Information Protocol for intradomain routing using Cisco Packet Tracer.						
	8. Set up a DNS server to translate domain names into iP addresses for network devices using Cisco Packet Tracer						
	9. Simulate the Stop-and-Wait ARO protocol for reliable data communication.						
	10. Simulate the Go-Back-N ARQ protocol for error and flow control.						
	11. Simulate a Complete Wired Network						
	12. Simulate a Complete Wireless Network.						
4.	Books Recommended:						
	1. Tanenbaum Andrew S., "Computer Networks", PHI, 5th Ed., 2011.						
	2. Stalling William, "Data and Computer Communications", PHI, 10th Ed., 2014.						
	3. Forouzan Behrouz A., "Data Communications and Networking", Tata McGraw-Hill, 5th Ed.,						
	2013. A Gallager R. G. And Bertsekas D. "Data Networks" PHI 2nd Ed. 1992						
	5. Garcia Leon and Wadjaja I., "Communication Networks", Tata McGraw-Hill, 2nd Ed., 2004.						
5.	Reference Books:						
	1 Deve Levie Networking All in One for Diversion 7 d 2010						
	1. Doug Lowe, Networking All-In-One for Dummies, 7ed, 2018.						

B. Tech. III (VL) Semester V	Scheme		т	Ρ	Credit
EC 341		3	0	0	03

1.	Course Outcomes (COs):							
	At the en	d of the course the students will be able to:						
	CO1	Describe semiconductor device physics and equations used for deriving a mo	odel.					
	CO2 Demonstrate various carrier transport equations.							
	CO3 Analyze methods to form closed-form analytical models.							
	CO4 Evaluate the operation of semiconductor devices using numerical methods.							
	CO5	Develop models for novel semiconductor devices.						
2.	Syllabus							
	DEVICE P	HYSICS	(03 Hours)					
	Review o	f Semiconductor Physics: PN Junction diode, Heterojunctions, MOSFETS.						
	SEMICON	IDUCTOR CARRIER TRANSPORT EQUATIONS	(07 Hours)					
	The Boltzmann model, Maxwell's Equations, The Classical Semiconductor Equations, Boundary Conditions, Generation and Recombination, and Thermal Conductivity and Heat Flow.							
	CLOSED-I	FORM ANALYTICAL MODELS	(08 Hours)					
	Solution Techniques for the Semiconductor Equations, Closed-Form Analysis of the Semiconductor Equations, Analysis of a PN junction diode, Analysis of Field effect Transistor Operation, Analysis of MOSFET Operation and Limitations of Closed-Form Analyses							
	FINITE-D	FFERENCE METHOD	(06 Hours)					
	Finite-Dil Finite-Dil	ference Schemes, Discretization of the Semiconductor Equations, Methods ference Equations, Boundary Conditions, and Examples of Finite-Difference Sir	of Solving the nulations.					
	SEMICLA	SSICAL TRANSPORT EQUATIONS	(06 Hours)					
	Hot Electron Effects: The Hydrodynamic Semi-classical Semiconductor Equations, Examples of Hot Electron Modelling							
	SIMULAT	ION OF HETEROJUNCTION DEVICES	(05 Hours)					
	Semicon and Num	ductor Equations for Heterojunctions, High Electron Mobility Transistors: Close erical Models.	d-Form Models					
	THE MON	ITE CARLO METHOD	(05 Hours)					
	The Mon Band Stru Monte Ca	te Carlo Method applied to Carrier Transport in Semiconductors: Equations of ucture and Free Flight, and Scattering Mechanisms, Treatment of Results, and arlo Simulations.	Motion, Energy Applications of					

	QUANTUM TRANSPORT THEORY	(05 Hours)
	Extension of Semiclassical Transport Concepts to Quantum Structures, Quantum me Concepts, Application of Quantum Mechanics to Semiconductor Device Modelling, Qua Theory, and Applications of Quantum Transport Theory	chanics — Basic ntum Transport
	Total Contact Tin	ne: = 45 Hours
3.	Books Recommended	
	 Snowden C.M., and, Snowden E., "Introduction to Semiconductor Device Mod Scientific, 1998. Selberherr S., "Analysis and Simulation of Semiconductor Devices", Springer-Verla 1984. Taur Y. and Ning T.H. "Fundamentals of Modern VLSI Devices, ", Cambridge Univers Edition, 2021. Vasileska D., Goodnick S. M., and Klimeck G., "Computational Electronics Sem Quantum Device Modeling and Simulation, CRC Press, 2010. Sze S. M., Li Y., and Kwok K. Ng, "Physics of Semiconductor Devices", John Willey, 2021. 	deling", World- ag, First edition, sity Press, Third miclassical and Fourth Edition,

B.Tech. III (VL) Semester V HARDWARE DESCRIPTION LANGUAGE	Scheme	L	т	Ρ	Credit
VL343		3	0	0	03

1.	<u>Course</u>	Outcomes (COs):					
	At the e	nd of the course the students will be able to:					
	CO1 Understand the concept of structural, data flow and behavioral style of hardware description						
	CO2	Implement register transfer and gate level Digital system circuits. Also, ve	erify with HDL				
	CO3	Develop and implement combinational logic circuits such as mux, demux, enco	oder, decoder,				
	CO4	Evaluate the synthesized bardware for area, power and speed					
	CO5	Design ALU, instruction decoder, FIFO using HDL					
2.	Syllabus						
	INTROD	UCTION	(11 Hours)				
	Basic Concepts Of Hardware Description Languages, Hierarchy, Concurrency, Logic And Delay Modeling, Structural, Data-Flow And Behavioral Styles of Hardware Description, Architecture Of Event Driven Simulators						
	VHDL –	MODELLING AND ANALYSIS	(16 Hours)				
	Syntax Express Compor Example	And Semantics Of VHDL, Variable And Signal Types, Arrays And Attribu- ions And Signal Assignments, Entities, Architecture Specification And nent Instantiation, Concurrent And Sequential Constructs, Use Of Procedures es of Digital Design Using VHDL	tes, Operators, Configurations, And Functions,				
	VERILOO	G – DIGITAL DESIGN AND SYNTHESIS	(18 Hours)				
	Syntax And Semantics Of Verilog, Variable Types, Arrays And Tables, Operators, Expressions And Signal Assignments, Modules, Nets And Registers, Concurrent And Sequential Constructs, Tasks And Functions, Examples Of Design Using Verilog, Synthesis Of Logic From Hardware Description						
		(Total Con	tact Hours: 45)				
3.	Books R	ecommended					
	 Bha Per Na Na Pal Bha 	askar J.,"VHDL Primer",Pearson Education Asia, 3rd Edition, 2015 rry D.,"VHDL",Tata McGraw-Hill, 4th Edition, 2017 vabi Z.,"VHDL",McGraw Hill, 3rd Edition,2007 nitkar S.,"Verilog HDL: A Guide to Digital Design and Synthesis", Pearson, 2nd Ed askar J.,"Verilog HDL Synthesis - A Practical Primer",Star Galaxy Publishing, 2018	dition, 2003 3				

B.Tech. III (VL) Semester V SENSORS AND TRANSDUCERS	Scheme	L	т	Ρ	Credit
EC361		3	0	0	03

1.	Course O	utcomes (COs):	
	At the end	d of the course the students will be able to:	
	CO1	Explain the different types of sensors and transducers with working principle	e.
	CO2	Apply the concepts of sensors for various applications.	
	CO3	Analyze different sensors and transducers for various applications.	
	CO4	Evaluate the applications of sensors in measurements/instrumentation.	
	CO5	Design the basic sensors systems for different applications.	
2.	<u>Syllabus:</u>		
	INTRODU	CTION	(05 Hours)
	General C Classificat	Concepts and Terminology, Definition of Transducer, Sensor and Actuator, Tra tion, Criteria to Choose a Transducer/Sensor, Characteristics parameters of Se	nsducer/Sensor nsors.
	RESISTIVE	TRANSDUCERS	(06 Hours)
	Resistive Light-Dep	Potentiometers, Strain Gauges, Resistive Temperature Detectors, RTDs, PT pendent Resistors (LDRs), Resistive Hygrometers, Resistive Gas Sensors	D, Thermistors,
	INDUCTIV	E AND MAGNETIC TRANSDUCERS	(06 Hours)
	Inductive Differenti sensors fo on Hall Ef	Transducers: Self-inductive transducer, Mutual inductive transducers, I al Transformer-LVDT Accelerometer, Applications of Inductive Transducers su or position measurement, dynamic motion measurement, Magnetic Sensors: fect, Performance Characteristics and Applications.	Linear Variable ich as proximity : Sensors based
	CAPACITI	VE TRANSDUCERS	(04 Hours)
	Working	Principle of Capacitive Transducer, Variable Distance based Capacitive Transc	lucers, Variable
	Area base	ed Capacitive Transducers, Variable Distance based Capacitive Transducers,	, Calculation of
	sensitiviti analytes.	es, Applications of Capacitive Transducers for the measurement of different p	hysical and bio-
	SELF-GEN	ERATING TRANSDUCERS	(06 Hours)
	Principle following transduce	of operation, construction, theory, advantages and disadvantages and transducers: Thermocouple, Piezo-electric transducer, Pyroelectric transducer and Electrochemical transducer.	applications of s, Photo-voltaic
	OPTICAL /	AND ACOUSTIC TRANSDUCERS	(04 Hours)
	Principle	of Optical fiber based sensors, Types of optical sensors, Applications of opti-	cal sensors and
	biosensor	rs. Principle Acoustic transducers, SAW and IDT sensors, Applications of Acous	tic transducers,
	Ultrasoni	c Sensor.	
	BIOSENSO	DRS	(03 Hours)
	Principle Electroch	of Biosensors, Performance Criteria of Biosensors, Types of Bioser emical, Thermal, Resonant, Ion-sensitive, Optical etc. and its applications.	nsors such as
	PRESSURI	E, FLOW AND LEVEL TRANSDUCERS	(07 Hours)
	Pressure Thin Plate Flow Tra	Transducers Like U-tube manometer, Bourdon tube, Diaphragm and Bellows, N es, Piezo-resistive, Capacitive Sensors, VRP Sensors, Pirani vacuum gauge Va nsducers Like Differential Pressure, Orifice Plate Flow meter. Flow No	Nembranes And acuum Sensors. zzle, Hot Wire

	Anemometer, Ultrasonic Flow meter, Vortex Flow meter. Level Transducers Like Di	splacer, Float,
	Pressure Gages, Capacitive, Resistive, Ultrasonic type level measurements, Level Switch.	
	ADVANCEMENTS IN SENSORS AND TRANSDUCERS	(04 Hours)
	Sensors Used In Smartphone, Sensors Used In Smart city, Sensors For Robotics, ME	MS and Nano
	Sensors, Smart and Integrated Sensors, IoT Applications.	
	(Total Cont	act Hours: 45)
2	Books Bacommanded:	
э.	books Recommended.	
	1. S. Vijayachitra, "Transducers Engineering", PHI Learning Pvt. Ltd., 1 st Ed., 2016	
	2. Ghosh Arun K., "Introduction to Transducers", PHI Learning Pvt. Ltd., 1 st Ed., 2014	
	3. Patranabis D., "Sensors and Transducers", 2nd Ed., Prentice-Hall India, 2004.	
	4. Shawhney A. K., "A Course in Electrical and Electronic Measurements and Inst	rumentation",
	Dhanpat Rai & Sons, January 2021.	
	5. Alok Barua, "Fundamental of Industrial Instrumentation", 1st Ed., Wiley India, 2011.	
	6. Jacob Fraden, "Handbook of Modern Sensors: Physics, Designs and Applications", 3rd	d Ed., Springer,
	2004.	

B. Tech. III (VL) Semester VI ANALOG VLSI DESIGN	Scheme	L	т	Ρ	Credit
VL302		3	0	2	04

1.	<u>Course</u>	Outcomes (COs):				
	At the e	nd of the course the students will be able to:				
	CO1	Understand Impact of MOS Device Parameters on Analog Circuit Design and th Design Requirements.	e Analog			
	CO2	Design and Analyze various CMOS Amplifiers, Differential Amplifiers, Current S Circuitry.	ource/Sink			
	CO3	Analyze various Op-amp topologies and compensation techniques.				
	CO4	Evaluate suitability of a specific topology of Analog Sub-Circuits / Biasing Circui Converters etc. for a particular application.	ts / Data			
	CO5	Investigate Switch Capacitor Circuits for filter design				
2.	Syllabus					
	ANALOO	G CMOS SUB-CIRCUITS	(10 Hours)			
	Small Signal Model For MOS, MOS Switch, MOS Resistors, Current Sink/Source, High Input Impedance Current Mirrors, Differential, Cascode And Current Amplifiers, Output Amplifiers, High Gain Amplifier Architectures					
	CMOS OPERATIONAL AMPLIFIERS (09 Hours)					
	Design o Stage O	of CMOS Operational Amplifiers, Telescopic Op-amp topologies, Compensation, o-Amps, Cascode Op-Amps, Simulation And Measurement Techniques	Design of Two			
	HIGH PE	RFORMACE CMOS OP-AMPS	(07 Hours)			
	Buffered Amps, L	d Op-Amps, High Speed/Frequency Op-Amps, Differential Output Op-Amps, Mic ow Noise And Low Voltage Op-Amps	ro Power Op-			
	SWITCH	ED CAPACITOR FILTERS	(09 Hours)			
	Switche Integrat	d Capacitor Circuits: Design and Analysis, Switched Capacitor Amplifiers, Switc ors, Z Domain Models, 1st And 2nd Order Switch Capacitor Filters, Higher Order F	hed Capacitor ilters			
	D/A AN	D A/D CONVERTERS	(10 Hours)			
	Sample Parallel Techniq	And Hold Circuits. Characterization of DAC, Nyquist Rate, Parallel DAC, Extending DAC, Serial DAC, Characterization Of ADC, Serial ADC, High Speed ADC, Cues	Resolution Of over Sampling			
		Total Contact T	ime: 45 Hours			

3.	List of Practical:
	1. Obtain various V-I characteristics of PMOS and NMOS transistor.
	2. Design and simulate single stage CS amplifier with different load
	3. Design and simulate single stage CG and CD amplifier with different load
	4. Design & Simulate following current mirrors topologies.
	5. Simulate and evaluate CS amplifier with feedback.
	6. Design and Simulate Cascode amplifier with following specifications:
	7. Characterize and evaluate Differential amplifier with resistive load.
	8. Realize 3-bit Charge Scaling DAC and find output voltage for all input combinations.
	9. Design 4-bit R-2R ladder DAC using active and passive switches
	10. Design and Simulate Differential amplifier with current mirror load for given specifications.
	11. Design of uncompensated single stage telescopic op-amp.
	12. Realize and evaluate folded cascade op-amp
4.	Books Recommended:
	1. John D. A. and Martin K., "Analog Integrated Circuit Design", 2nd Ed., Wiley, 2013
	2. Razavi Behzad, "Design of Analog CMOS Integrated Circuit", Tata McGraw-Hill, 2nd Edition, 2017
	3. Allen Philip and Holberg Douglas, "CMOS Analog Circuit Design", Oxford University Press, 3rd
	Edition, 2016
	4. Gregorian R. and Temes G.C., "Analog MOS ICs for Signal Processing", Wiley 2008
	5. Baker Jacob R., Harry W. Li and Boyce David E., "CMOS: Circuit Design, Layout and Simulation",
	Wiley, Interscience, 3rd Edition, 2013

B.Tech. III (VL) Semester VI VLSI SYSTEM DESIGN	Scheme	L	Т	Ρ	Credit
VL304		3	0	2	04

1.	Course O	utcomes (COs):	
	At the end	d of the course the students will be able to:	
	C01	Describe systems levels issues related to interconnect and its solution.	
	CO2	Apply the system decompositions in data path and control path.	
	CO3	Analysis of sequential logic circuit design.	
	CO4	Evaluate various Timing issues and its solutions.	
	CO5	Design systems with shared memory architecture.	
2.	Syllabus:		
			(12 0.000)
	INTERCO	NNEC I	(12 Hours)
	The Wire	, Interconnect Parameter, Electrical and Spice Wire Model, RLC Parasitic, Sign	al Integrity and
	High Spee	ed Behavior Of Interconnects: Ringing, Cross Talk And Ground Bounce. Layout	Strategies at IC
	And Boa	rd Level for Local and Global Signals, Power Supply Decoupling, Advanc	e Interconnect
	Techniqu	es. Clocking strategy.	
	SYSTEM H	IARDWARE DECOMPOSITION	(10 Hours)
	VLSI Desig Level Des Path and Subsyster design ph And Cons	gn Flow, Mapping Algorithms into architectures, Data Path And Control Path, Ro cription, Control Path Decomposition (Interfacing With FSM), Pitfalls of Decomp worst case timing analysis, Control Flow And Data Flow Pipelines, Communions, Control Deadlocks. Concept of hierarchical system design; Data-path elem ilosophies, fast adder, multiplier, driver etc. Timing And Control Shared Memori istency, Mutual Exclusion.	egister Transfer position, Critical cation Between nent: Data-path ry Data Hazards
	DESIGNIN	IG OF SEQUENTIAL LOGIC CIRCUIT	(10 Hours)
	Timing Synchron Synchron Optimizat Interface Meta-Sta	classification; Synchronous design; Self-timed circuit design; Clock ization: Synchronizers; Arbiters; Clock Synthesis; PLLs; Clock generation; Clo ous Vs Asynchronous Design, Static And Dynamic Latches And Register tion Of Pipelined Stages, Timing Issues In Digital Circuits, Handling Multiple Between Synchronous And Asynchronous Blocks, Set-Up And Hold Time Violat bility.	Synthesis and ck distribution; s, Design And Clock Domains, ion, Concept Of
	MEMORY	SUBSYSTEM DESIGN	(13 Hours)
	Memory	Architecture, Shared Memory Architecture, Data Hazards and Consistency, Mu	tual Exclusion
	PRACTICA	L WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY	(30 Hours)
		Total Contact Time: = 45 Hours + 30 Ho	ours = 75 Hours

3.	List of Practical:
	 Introduction of IP Integrator. Implement the trigonometric function using CORDIC IP Design and Simulate following using IP a) Single MAC , b) Parallel MAC, c) Serial MAC Design and Implement Low Pass FIR filter Debugging MAC unit in hardware using ILA core and viewing ILA probe data in the waveform viewer. RTL 2 GDSII (Standard Cell based Semi custom ASIC Flow) To study Logic synthesis: Using standard cell library and analysis of area, power, delay report. To obtain the design constraint file, LEC (Logic Equivalence Check), DFT (Design For Testability) insertion to verify the chip after fabrication, Gate-level netlist generation
	 To study Place and Route (PnR): To place all the standard cells, Macros and I/O pads with minimal area, with minimal delay and Route based on Gate-level netlist, Floor Plan, Power Plan, Placement, CTS (Clock Tree Synthesis), and Routing, DRC (Design Rule Check) error, GDS-II file generation Signoff or Tapout : To fix the timing violations by post route simulation and a final layout file free from all the violations is streamed out in GDSII format Topics for Mini Projects: Radix-4 Booth Multiplier, Parallel prefix adders, UART Hardware, I2C transceiver hardware, Divider,
4	Square Root, CORDIC arithmetic, Control unit design for CPU Data path
4.	Books Recommended
	 Rabaey Jan M., Chandrakasan Anantha and Borivoje Nikolic, "Digital Integrated Circuits (Design Perspective)", 2nd Ed., Prentice Hall of India, 2016 (Reprint). Neil H. E. Weste, David. Harris and Ayan Banerjee,, "CMOS VLSI Design", 4th Ed., Pearson Education, 2019 Smith M. J. S., "Application Specific Integrated Circuits", 1st Ed., Addison Wesley, 1999. Dally W. J. and Poulton J. W., "Digital System Engineering", 1st Ed., Cambridge University Press, 1998. Hall S. H., Hall G. W. and McCall J. A., "High Speed Digital System Design", 1st Ed., John Wiley & Sons, 2000. Bakoglu H. B., "Circuit Interconnect and Packaging For VLSI", 1st Ed., Addison-Wesley, 1990. Laung-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen, "VLSI Test principles And Architectures Design For Testability", 1st Ed., Morgan Kaufmann Publishers, 2006.
5.	Reference Books
	1. Bakoglu H. B., "Circuit Interconnect and Packaging For VLSI", 1st Ed., Addison-Wesley, 1990.
	 Laung-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen, "VLSI Test principles And Architectures Design For Testability", 1st Ed., Morgan Kaufmann Publishers, 2006.

B.Tech. III (VL) Semester VI REAL TIME SYSTEMS	Scheme	L	т	Ρ	Credit
VL322		3	0	2	04

1.	<u>Course (</u>	<u>Dutcomes (COs):</u>						
	At the e	nd of the course the students will be able to:						
	CO1	Explain fundamental principles for programming of real time systems with time limitations.	and resource					
	CO2 Describe the foundation for programming languages developed for real time programming.							
	CO3 Account for how real time operating systems are designed and functions.							
	CO4	Describe what a real time network is.						
	CO5 Use real time system programming languages and real time operating systems for real time applications.							
	CO6	Analyse real time systems with regard to keeping time and resource restriction	ns.					
2.	<u>Syllabus</u>	<u></u>						
	INTROD	UCTION TO REAL-TIME SYSTEMS	(10 Hours)					
	Hard Ve	ersus Soft Real Time Systems, Reference Models of Real Time Systems, Op	erating System					
	Services	, I/O Subsystems, Network Operations Systems, Real Time Embedded Syste	ems, Operating					
	Systems	Interrupt Routines in RTOS Environments, RTOS Task Scheduling Models, Interru	pt Latency And					
	Respons	se Time, Standardization Of RTOS.						
	REAL-TI	ME SCHEDULING AND SCHEDULABILITY ANALYSIS	(10 Hours)					
	Scheduling, Priority Driven Scheduling Of Periodic Tasks, Hybrid Schedules, Event Driven Schedules, Earliest Dead Line First (EDF) Scheduling, Rate Monotonic Algorithm (RMA), Real Time Embedded Operating Systems: Standard & Perspective, Real Time Operating Systems: Scheduling Resource Management Aspects, Quasi-Static Determining Bounds On Execution Times.							
	INTER-PROCESS COMMUNICATION AND SYNCHRONIZATION OF PROCESSES, TASKS (06 Hours) AND THREADS							
	Multiple Commu	e Process in An Application, Data Sharing By Multiple Tasks And Routines nication.	Inter Process					
	REAL-TI	ME OPERATING SYSTEMS	(13 Hours)					
	Handling Resources Sharing and Dependencies Among Real Time Tasks, Resource Sharing Among real Time tasks, Priority Inversion, Priority Inheritance Protocol (PIP), Highest Locker Protocol (HLP), Priority Ceiling Protocol (PCP), Different Types of Priority Inversion Under PCP, Important Features of PCP, Handling Task Dependencies, Real time communication, Real time systems for multiprocessor systems, Real-time databases.							
	COMME	RCIAL REAL TIME OPERATING SYSTEMS	(06 Hours)					
	Time Se	rvices, Unix As Real Time OS, Non-Primitive Kernel, Dynamic Priority Levels, L	Inix Based Real					
	Time OS RT Linux	5, Extension to the Traditional Unix Kernal, Host Target Approach, Preemption P <, Windows CE as Real Time OS, Real Time POSIX Standard, MC/OS-II	oint Approach,					
	PRACTIC	CAL WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY	(30 Hours)					
		(Total Contact Time: 45 Hours + 30 Ho	urs = 75 Hours)					

3.	List of Practical:
	1. Concepts of Multi-threading using pThreads library
	2. Semaphore, Mutual exclusion and Condition variable using pThreads
	3. Data synchronization using pThreads.
	4. Introduction to FreeRTOS and Target hardware
	5. LED blinking using FreeRTOS library
	6. UART transmission using FreeRTOS library
	7. Multiple GPIOs and LED using FreeRTOS library
	8. Implementation of Round-Robin algorithm using FreeRTOS
	9. Implementation of EDF Algorithms using FreeRTOS
	10. Implementation of RMA Algorithm using FreeRTOS
	11. Implementation of Resource Access Control using FreeRTOS
Δ.	Books Recommended:
	1. Raiib Mall. "Real Time Systems Theory and Practice". 1st Ed., Pearson Education, 2007.
	 Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design".
	2nd Ed Morgan Kaufman 2008
	3. Liu Jane. "Real-time Systems". 1st Ed., PHI. 2000
	4 Albert M K Cheng "REAL-TIME SYSTEMS Scheduling Analysis and Verification" 1st Ed. Wiley
	Interscience, 2002.
	5 Richard Zurawski "Embedded Systems Handbook" 1st Ed. CRC Taylor Francis 2006
	5. Menara Zarawski, Embedded Systems Handbook , 1st Ed., ene rayior Francis, 2000.

B.Tech. III (VL) Semester VI VLSI ARCHITECTURES FOR DIGITAL SIGNAL PROCESSING	Scheme	L	т	Ρ	Credit
EC324		3	0	2	04

1.	Co	ourse Ou	itcomes (COs):						
	At	the end	of the course the students will be able to:						
		CO1	Describe DSP/ML algorithms using data flow graphs and various VLSI archited	ctures for					
	CO2 Apply fast convolution methods for optimization								
	CO3 Analyze critical path algorithm and strength reduction								
	CO3 Analyze critical path algorithm and strength reduction.								
	CO5 Design VISI architectures for the signal processing/Machine Learning hased on								
		000	specifications.						
2.	Sy	llabus:							
	DS	SP CONC	CEPTS	(08 Hours)					
	Liı ap	near sy oplicatio	stem theory, DFT, FFT, DCT realization of digital filters. Typical DSP a ns, Data flow graph presentation of DSP algorithm.	lgorithms, DSP					
	AF	RCHITEC	TURAL ISSUES	(10 Hours)					
	Bi	nary Ad	ders, Binary multipliers, Multiply Accumulator (MAC) and Sum of Product (S	OP). Pipelining					
	and Parallel Processing, Retiming, Unfolding, Folding, Register Minimization Technique and Systolic architecture design, Coordic Architecture, Distributed Arithmetic Architecture								
	FAST CONVOLUTION (09 Hours)								
	Cook-Toom algorithm modified Cook-Toom algorithm, Winograd algorithm, modified Winograd algorithm, Algorithmic strength reduction in filters and transforms, DCT and inverse DCT, parallel FIR filters.								
	HA	ARDWA	RE ARCHITECTURES FOR MACHINE LEARNING	(10 Hours)					
	Architectural approaches for implementing DNN: reduced precision of operations and operands (floating point to fixed point, reducing the bit width, nonuniform quantization, and weight sharing), reduce number of operations and model size (compression, pruning, and compact network architectures). Advanced topics in ML hardware design								
	POWER ANALYSIS IN DSP SYSTEMS(11 Hours)								
	Sc te	aling ve chnique	ersus power consumption, power analysis, power reduction techniques, po es, low power IIR filter design, Low power CMOS lattice IIR filter.	wer estimation					
	PR	ACTICA	L WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY	(30 Hours)					
				`					
			(Total Contact Time: 45 Hours + 30 Ho	urs = 75 Hours)					

3.	List of Practical:
	1. Investigation in FIR Filter to Improve Power Efficiency and Delay Reduction.
	2. Power Optimization of Single Precision Floating Point FFT Design Using Fully Combinational
	Circuits
	3. Area-Time Efficient Scaling-Free CORDIC Using Generalized Micro-Rotation Selection
	 Design and Implementation of Adaptive filtering algorithm for Noise Cancellation in speech signal on FPGA
	5. A Reconfigurable Overlapping FFT/IFFT Filter
	6. High-Throughput Programmable Systolic Array FFT Architecture and FPGA Implementations
	7. Hardware Implementation of Adaptive LMS Filter
	8. Hardware implementation of Convolution Engine
	9. Hardware implementation of Max Pool Layer
	10. Hardware implementation of Quantized Neural Network
	11. Mini Projects
4.	Books Recommended:
	1. Keshap K. Parhi, "VLSI Digital Signal Processing Systems, Design and Implementation", 1st Ed.,
	John Wiley, 2007.
	2. Keshab K. Parhi and Takao Nishitani, Marcel Dekker "Digital Signal Processing for Multimedia
	Systems", 1st Ed., CRC Press, 1999.
	 U. Meyer-Baese, "Digital Signal processing with Field Programmable Arrays", 4rd Ed., Springer, 2014.
	4. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, "Efficient Processing of Deep Neural
	Networks", Springer Nature, 31 May 2022
	5. Magdy A. Bayoumi, "VLSI Design Methodologies for Digital Signal Processing Architectures",
	Springer US, 2012
5.	Reference Books:
	1. V. Sze, "Designing Hardware for Machine Learning," in IEEE Solid-State Circuits Magazine, vol. 9,
	no. 4, pp. 46-54, Fall 2017.
	2. Maurizio Martina, "VLSI Architectures for Future Video Coding", IET, 2019

B.Tech. III (VL) Semester VI FOUNDATION OF VLSI CAD	Scheme	L	т	Ρ	Credit
VL342		3	0	0	03

1.	<u>Course (</u>	Dutcomes (COs):					
	At the er	nd of the course the students will be able to:					
	CO1	Understand CAD tools used for VLSI design and synthesis					
	CO2	Optimize the algorithms for portioning in the design process of Complex IC					
	CO3	Demonstrate capability of floor planning algorithm for CAD tool					
	CO4	Gather knowledge of Placement and Routing.					
	CO5 Understand Timing Closure						
2.	<u>Syllabus</u>	<u>.</u>					
	INTROD	UCTION TO VLSI CAD AND SYNTHESIS	(08 Hours)				
	Intro to Boolean	VLSI CAD & Logic Synthesis • Graph Theory & Optimization problems • Boo Function Representation & Manipulation: BDDs • Satisfiability & Graph Coverin	lean Algebra • Ig				
	NETLIST	AND SYSTEM PARTITIONING	(08 Hours)				
	Optimiza	ation Goals, Partitioning Algorithms: Kernighan-Lin (KL) Algorithm, Extensions of	the Kernighan-				
	Lin Algo	rithm, Fiduccia-Mattheyses (FM) Algorithm, A Framework for Multilevel Partitior	ning, Clustering,				
	Multilev	el Partitioning, System Partitioning onto Multiple FPGAs					
	CHIP PL/	ANNING	(08 Hours)				
	Introduction to Floor planning, Optimization Goals in Floor planning, Floorplan Representations, Floor						
	planning	g Algorithms, Pin Assignment, Power and Ground Routing					
	GLOBAL	AND DETAILED PLACEMENT AND ROUTING	(13 Hours)				
	Global F	Placement, Min-Cut Placement, Analytic Placement, Simulated Annealing, Moc	lern Placement				
	Algorith	ms, Legalization and Detailed Placement, The Global Routing Flow: Single	e-Net Routing;				
	Rectiline	ear Routing; Global Routing in a Connectivity Graph; Finding Shortest Paths	with Dijkstra's				
	Algorith	m; Finding Shortest Paths with A* Search, Full-Netlist Routing: Routing by	Integer Linear				
	Program	iming; Rip-Up and Reroute (RRR), Modern Global Routing: Pattern Routin	ng; Negotiated				
	Congestion Routing, Detailed Routing, Specialized Routing						
	TIMING CLOSURE (08 Hours)						
	Timing Analysis and Performance Constraints: Static Timing Analysis; Delay Budgeting with the Zero-						
	Slack Alg	gorithm, Timing-Driven Placement: Net-Based Techniques; Embedding STA into L	inear Programs				
	for Plac	ement, Timing-Driven Routing: The Bounded-Radius, Bounded-Cost Algorithm	ı; Prim-Dijkstra				
	l radeof Restruct	r; Minimization of Source-to-Sink Delay, Physical Synthesis: Gate Sizing; Bu curing	iffering; Netlist				
		(Total Contact T	ime: 45 Hours)				
		•	,				

3.	Books Recommended:
	 Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu, "VLSI Physical Design: From Graph Partitioning to Timing Closure", Springer, 2011. Gary D. Hachtel, Fabio Somenzi, "Logic Synthesis and Verification Algorithms", Springer US, 1996 N. Shervani, "Algorithms for VLSI Physical Design Automation", 3rd Edn., Kluwer Academic Publishers, 1998 Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw-Hill Education, 1994 S. H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 1999
Δ	Reference Books:
7.	
	 Keshap K. Parhi, "VLSI Digital Signal Processing Systems, Design and Implementation", 1st Ed., John Wiley, 2007.

B.Tech. III (VL) Semester VI MEMORY TECHNOLOGY	Scheme	L	т	Ρ	Credit
VL344		3	0	0	03

1.	<u>Course O</u>	utcomes (COs):				
	At the en	d of the course the students will be able to:				
	CO1	Understand fundamental concepts of different memory technologies				
	CO2	Describe static RAM & dynamic RAM				
	CO3	Compare the various memory technologies				
	CO4	Analyze the various memory technologies				
	CO5	Design different advanced memory technologies				
2.	Syllabus:					
	INTRODU	JCTION TO MEMORY TECHNOLOGIES	(08 Hours)			
	Memory	organization and overview of memory technology: market, trends and tech	nologies, Overview			
	of volatil	e and non-volatile memory technology, Static Random-Access Memory (SRA	AM), Dynamic RAM			
	(DRAM),	1T-1C architecture, Capacitorless-DRAM, On-chip memory, on-chip memor	ry types.			
	STATIC R	AM	(10 Hours)			
	Static Ra	ndom Access Memories (SRAMs), SRAM Cell Structures, MOS SRAM Archit	ecture, MOS SRAM			
	Cell and	Peripheral Circuit, Bipolar SRAM, Advanced SRAM Architectures, Applicatio	n Specific SRAMs.			
	DYNAMI	C RAM	(09 Hours)			
	DRAMs, MOS DRAM Cell, Bi-CMOS DRAM, Error Failures in DRAM, Advanced DRAM Design and					
	Architect	cure, Application Specific DRAMs, SRAM and DRAM Memory controllers.				
	FLASH MEMORY (08 Hours)					
	Flash me	mory: NOR and NAND architecture, Poole Frenkel emission and Fowler-N	ordheim tunneling,			
	tioating gate (FG) and charge-trap (CT) NAND flash, reliability, scaling and multi-bit capability (MLC) 3D					
	NAND, D	ics, rear, v-mand, vo mand hash, reliability and file				
	ADVANC	ED MEMORY TECHNOLOGIES	(10 Hours)			
	High-den	sity Memory Packing Technologies, Emerging non-volatile memories (eNV	/M): Resistive RAM			
	(RRAM),	unipolar and bipolar stacks, oxygen vacancy and ionic transport, reliabil	ity and endurance,			
	Phase ch	ange memory (PCM), Ferroelectric RAM (FeRAM), Gallium Arsenide (GaAs)	FRAMs, Conductive			
	Bridge R/	AM (CBRAM) and Spin-transfer Torque Magnetic RAM (STT-MRAM)				
		(Total	Contact Hours: 45)			
3	Books Pe	commended:				
э.	DOOKS NO	<u>commended.</u>				
	1. S. Yı	u, "Semiconductor Memory Devices and Circuits", 1 st Edition, CRC Press, 20	22.			
	2. Ash	ok K. Sharma, "Semiconductor Memories: Technology, Testing, and Relia	ability", 1 st Edition,			
	Wile	ey IEEE, 2013				
	3. Kiyo	o Itoh, "VLSI Memory Chip Design", 1st Edition, Springer, 2001				
	4. N. V	Veste and D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspe	ective", 3 rd Edition.			
	Pear	rson, 2006				
	5. Y.N	ishi and Magyari-Kope, "Advances in non-volatile memory and storage techr	nology", Woodhead			
	Pub	lishing, 1 st Edition, 2019.				
	6. Kee	th, Baker, Johnson, and Lin, "DRAM Circuit Design: Fundamental and High	-Speed Topics", 2 nd			
	Edit	ion, Wiley, IEEE 2007.				

B.Tech. III (VL) Semester VI LOW POWER VLSI DESIGN	Scheme	L	т	Ρ	Credit
VL346		3	0	0	03

1.	Course Outcomes (COs):					
	At the end of the course the students will be able to:					
	CO1 Understand the physics of power dissipation in CMOS					
	CO2 Estimate power that occurs due to various signal and circuit phenomena					
	CO3 Design low power CMOS circuits					
	CO4 Analyze VLSI Design Methodologies for achieving low power					
	CO5	Evaluate algorithms for power estimation and optimization				
2.	Syllabus					
	PHYSICS	OF POWER DISSIPATION IN CMOS	(08 Hours)			
	Submicron MOSFET, Gate induced drain leakage, Short circuit dissipation, Dynamic dissipation, Load capacitance, Low power limits: Hierarchy limits, fundamental limits, device limit, circuit limit, system limit					
	POWER E	STIMATION	(08 Hours)			
	Probabilistic Techniques for Signal activity Estimation, Statistical Technique to estimate average power, Estimation of Glitch power, Power sensitivity analysis, Input vector compaction, Domino CMOS, Circuit reliability, High level power estimation, Estimation of maximum power					
	DESIGN C	OF LOW POWER CMOS CIRCUITS	(09 Hours)			
	Circuit Design Styles, Leakage current and submicron device issues, Low voltage circuit design techniques, Multiple supply voltages					
	VLSI DESI	GN METHODOLOGY FOR LOW POWER	(10 Hours)			
	Low power physical design, Low power gate level design (Logic minimization, spurious transition reduction and precomputation based reduction), Low power architectural level design (parallelism, pipelining, distributed processing and power management), Algorithmic level power reduction (switched capacitance and switching activity reduction					
	ALGORITHMS FOR LOW POWER (10 Hours)					
	Algorithms for power estimation (Gate level, Architectural level, Instruction level and bus switching activity), Power optimization: Algorithm transformations, minimizing memory access, Instruction selection/ordering and power management, Automated low power code generation, Codesign for Low power					
	Total Contact Time: = 45 Hours					

3.	Воо	ks Recommended
	1.	Kaushik Roy, Sharat C. Prasad, "Low-Power Cmos VIsi Circuit Design", John Wiley & Sons, 2009.
	2.	A. Bellamour, and M. I. Elmasri, "Low Power VLSI CMOS Circuit Design", Springer US, 2012.
	3.	Anantha P. Chandrakasan and Robert W. Brodersen, "Low Power Digital CMOS Design", Kluwer
		Academic Publishers, 2012.
	4.	Christian Piguet, "Low-Power CMOS Circuits: Technology, Logic Design and CAD Tools", Tayler and
		Francis (CRC), 2006.
	5.	Sung-Mo Kang and Y. Leblebici, "CMOS Digital Integrated Circuits", Tata Mcgrag Hill, 3rd edition,
		2003

B.Tech. III (VL) Semester VI IOT AND APPLICATIONS	Scheme	L	т	Ρ	Credit
EC344		3	0	2	04

1.	Course Outcomes (COs):					
	At the end of the course the students will be able to:					
	CO1 Explain the key concepts and architecture of IoT systems.					
	CO2 Understand the hardware and software used in IoT systems.					
	CO3 Design and implement IoT-based applications using sensors, microcontrollers, and communication protocols					
	CO4 Evaluate the Performance of various protocols used in IoT systems.					
	CO5	Develop IoT systems for smart environments, such as smart cities, healthcare, a automation.	and industrial			
2.	<u>Syllabus</u>	<u>i</u>				
	INTROD	UCTION TO INTERNET OF THINGS	(06 Hours)			
	Definitio	on and characteristics of IoT, Evolution of IoT, key technologies, and drivers.	. ,			
	IoT arch	itecture: Layers (perception, network, application).				
	Networl	c topologies for IoT (star, mesh, peer-to-peer), Addressing schemes in IoT.				
	Applicat healthca	ions of IoT: Overview of IoT applications in various domains (smart homes are, agriculture, industry).	s, smart cities,			
	SENSOR	S, ACTUATORS, AND IOT DEVICES	(10 Hours)			
	Overview of Sensors and Actuators: Types of sensors (temperature, pressure, humidity, light, proximity motion, etc.), Types of actuators: motors, relays, servos. Microcontrollers and Development Platforms: Introduction to popular IoT hardware platform					
	(Arduino, Raspberry Pi, ESP32), Integration of sensors and actuators with microcontrollers, Overview of communication interfaces: I2C, SPI, UART, GPIO.					
		wer communication technologies (BLE LoBa Zighee)				
		HITECTURE AND PROTOCOLS	(12 Hours)			
	Commu	nication Models and IoT Protocols: Machine-to-Machine (M2M), Device-to	-Device (D2D),			
	Device-t	o-Cloud communication.	, <i>"</i>			
	IoT Communication Protocols: Application Layer Protocols: MQTT, CoAP, HTTP/HTTPS. Transport Layer Protocols: TCP, UDP, MQTT-SN. Network Layer Protocols: IPv4, IPv6, 6LoWPAN. Data Link Layer Protocols: IEEE 802.15.4. LoRa. Bluetooth Low Energy (BLE). Zigbee, Wi-Fi.					
	CLOUD /	AND EDGE COMPUTING IN IOT	(10 Hours)			
	Cloud Platforms for IoT: Overview of cloud services for IoT: AWS IoT, Google Cloud IoT, Microsoft Azure IoT Hub, Data storage, processing, and analytics using cloud platforms.					
	Edge and Fog Computing: Introduction to edge and fog computing in IoT, Role of edge devices for local processing, Hybrid cloud-edge architecture.					
	Data An	alytics in Io1: Big data analytics for Io1-generated data, Data visualization tools f	or lol.			
		Ications and Case Studies	(7 Hours)			
	Silidit II	ment	or smart energy			
	Smart C environi	ities: IoT for urban planning (traffic management, smart parking, waste manage mental monitoring.	ement), IoT for			
	Healthca Integrat	are and Wearables: IoT applications in healthcare (remote patient monitoring, fi ion of wearable devices with healthcare systems.	tness tracking),			

	Industrial IoT (IIoT): IoT for industrial automation (predictive maintenance, supply chain management),						
	PRACTICAL WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY (30 Hours)						
	(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)						
3.	List of Practical:						
	 Familiarization with Arduino/Raspberry Pi/ESP32 and perform necessary software installation. To interface LED and Buzzer with Arduino/Raspberry Pi/ESP32 and write a program to continuously turn ON LED for 1 second and turn it OFF for 2 seconds. To interface Infrared sensor with Arduino/Raspberry Pi/ESP32 and write a program to turn ON LED at the sensor detection. To interface temperature and humidity sensor with Arduino/Raspberry Pi/ESP32 and write a program to print temperature and humidity readings. To interface LCD with Arduino/Raspberry Pi/ESP32 and write a program to print temperature and humidity readings. To interface Bluetooth with Arduino/Raspberry Pi/ESP32 and write a program to send sensor data to smartphone using Bluetooth. To interface Bluetooth with Arduino/Raspberry Pi/ESP32 and write a program to turn LED ON/OFF when 1/0 is received from smartphone using Bluetooth. Write a program on Arduino/Raspberry Pi/ESP32 to upload temperature and humidity data to cloud. Write a program on Arduino/Raspberry Pi/ESP32 to subscribe to MQTT broker. Write a program on Arduino/Raspberry Pi/ESP32 to subscribe to MQTT broker for temperature data and Print it. Write a program to create TCP server on Arduino/Raspberry Pi/ESP32 and respond with humidity data to TCP client when requested. Write a program to create UDP server on Arduino/Raspberry Pi/ESP32 and respond with humidity data to UDP client when requested. 						
4.	Books Recommended:						
	 Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", 1st Ed., CRC Press, 2017. Arshdeep Bahga and Vijay Madisetti, "Internet of Things: A Hands-on Approach", 1st Ed., Universities Press, x 2014. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos and David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Ed., Academic Press, 2014. Rahul Dubey, "An Introduction to Internet of Things: Connecting Devices, Edge Gateway, and Cloud with Applications", 1st Ed., 2019. Brian Russell and Drew Van Duren, "Practical Internet of Things Security", Packt Publishing, 2016. 						

B.Tech. III (VL) Semester VI SOLAR PHOTOVOLTAICS		L	т	Ρ	Credit
VL362		3	0	0	03

1.	<u>Course O</u>	utcomes (COs):				
	At the end of the course the students will be able to:					
	CO1 Explain Solar Resource and Basics of Photovoltaic Systems.					
	CO2	CO2 Describe requirements for the efficient Photovoltaic Device Design and Processing.				
	CO3	CO3 Demonstrate different solar cell fabrication and characterization techniques.				
	CO4 Explain and analyze the Current and Emerging PV technologies, and PV Module related					
	concepts.					
	CO5 Design the Solar Photovoltaic Devices.and PV Modules					
			I			
2.	Syllabus:					
	INTRODU	ICTION TO SOLAR PHOTOVOLTAICS	(04 Hours)			
	Solar Res	ource, Solar Energy Conversion Technologies, Need of Solar PV, Prospects of PV	technology.			
	FUNDAM	ENTALS OF SOLAR CELLS	(09 Hours)			
	Light Abs	orption, Charge Excitation, Charge Drift/Diffusion, Charge Separation, Charge	Collection, PN			
	junction	diodes: Dark IV, illuminated IV, Device Performance parameters: Short Circuit (Current, Open			
	Circuit Voltage, Fill Factor, Efficiency, Series/ Shunt Resistance, Factors affecting the performance					
	paramete	ers, Detailed Balanced Limit.				
	FABRICAT	TION AND CHARACTERIZATION OF SOLAR CELLS	(10 Hours)			
	 Solar Cell Fabrication: Vacuum Based Deposition Techniques: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD): Sputtering, Electron Beam Evaporation, Pulsed Laser Deposition, Atomic Layer Deposition, Molecular Beam Epitaxy. Solution Based Deposition Techniques: Electrodeposition, Spin Coating, Layer-by Layer Deposition, Printing, Colloidal Synthesis. Solar Cell Characterization: Solar Simulator, Quantum Efficiency Measurement, Secondary Ion Mass Spectroscopy, XPS/UPS, 					
		CIAL AND EMERGING TECHNOLOGIES IN SOLAR CELLS	(10 Hours)			
	Silicon PV Technology, Chalcopyrite/ Kesterite Solar Cells, Organic Photovoltaics, Dye Sensitized Solar Cells, Perovskite Solar cells, Transparent Photovoltaic Devices, Flexible PV Devices, Multijunction					
	Devices,	Concentrator Solar Cells.				
	CUTTING	-EDGE THEMES AND PV MODULES	(07 Hours)			
	Light manipulation in PV Devices: Plasmonic Integration, Surface Texturing, Spectrum Splitting Techniques.Module Design, Interconnection effects, Temperature effects, Lifetime of PV modules, Module measurement.					
	PV DEVIC	E MODELING	(05 Hours)			
	Basics of Solar Cell Device Modeling, Thin-Film Solar Cell Device Modeling: Hands-on with an Open Source Tool, Modeling of PV Modules.					
	(Total Contact Hours : 45)					

3.	Books Recommended:
	 Martin A. Green, "Solar Cells: Operating Principles, Technology and System Applications", Prentice-Hall, 1986. Jenny Nelson, "The Physics of Solar cells", World Scientific, 2003. Smets Arno et al., "Solar Energy Fundamentals, Technology, and Systems", UIT Cambridge. 2013 D. K. Schroder, "Semiconductor Material and Device Characterization", Wiley Interscience, 2006 Konrad Mertens, "Photovoltaics Fundamentals, Technology, and Practice", Wiley, 2018, J. Poortmans and V. Arkhipov, "Thin Film Solar Cells: Fabrication, Characterization and Applications", Willey, 2006.
4.	Additional Resources:
	 Antonio Luque, Steven Hegedus, "Handbook of Photovoltaic Science and Engineering", Wiley, 2011 Relevant Journal and Conference publications.

B.Tech. III (VL) Semester VI SEMICONDUCTOR PACKAGING	Scheme	L	т	Ρ	Credit
VL364		3	0	0	03

1.	Course O	utcomes (COs):				
	At the end of the course the students will be able to:					
	CO1 Understand fundamental concepts of different package manufacturing processes					
	CO2	Describe different semiconductor components and package tests				
	CO3	Demonstrate electrical and physical failure analysis				
	CO4	Identify different semiconductor package materials				
	CO5	Comply industrial quality and statistical process control				
2.	<u>Syllabus:</u>					
	PACKAGE	MANUFACTURING PROCESSES	(08 Hours)			
	Packaging	g Assembly Technology, Wafer Thinning, Dicing, Die Attach, Wire bonding, F	lip Chip process,			
	Flux Clea	ning, Under fill, Encapsulation, Laser Marking, Solder Ball Attach, Reflow	r, Singulation, IC			
	Packagin	g Toolsets & equipment operation, clean room operations				
	SEMICON	DUCTOR COMPONENT AND PACKAGE TEST	(10 Hours)			
	Overview	of Testing methodologies, components tested & their characteristics, Chal	lenges in testing,			
	Types of	Testers (Automated test Equipment & Benchtop Testers), Components a	& Subsystems of			
	Testers, F	Principles of Functional Testing, Parametric/ Boundary Scan /In-Circuit Test/ F	lying Probe Test,			
	Test Data	Analysis, Design for Testability & Tester Calibration & Maintenance, Future	Trends			
	ELECTRIC	AL AND PHYSICAL FAILURE ANALYSIS	(09 Hours)			
	Package failure modes, Failure detection mechanisms, Failure analysis tools, Test programs debugging,					
	Data Ana	lytics, ESD & EMI Management				
	SEMICON	IDUCTOR PACKAGE MATERIALS AND QUALIFICATION	(09 Hours)			
	Reliability testing & qualification- MST/MSL, TC/TS, HAST & uHAST, Mold Compounds (Moldability),					
	Underfill Materials, Die Attach Adhesives & Films, Substrate Technology, Bonding Wire, Solder & Dielectric materials					
	Diciceente					
	INDUSTR	IAL QUALITY AND STATISTICAL PROCESS CONTROL	(09 Hours)			
	Quality C	ontrol Plan (QCP) & Quality Management System (QMS), Incoming Material Ir	spection, In-Line			
	Quality, I	vieasurement System Analysis, Statistical analysis methods, Statistical Proce	ess control (SPC),			
	Fault Det					
		(Total Co	ontact Hours: 45)			
3.	Books Recommended:					
	1. Hwa	iyu Geng, "Semiconductor Manufacturing Handbook", 2nd Edition, McGra	w-Hill Education,			
	2017					
	2. Gary	S. May and Costas J. Spanos, "Fundamentals of Semiconductor Manufactu	ring and Process			
	Cont	rol", 1st Edition, Wiley-IEEE Press, 2006				
	3. Pete	r Van Zant, "Microchip Fabrication: A Practical Guide to Semiconductor	Processing", 6th			
	Editi	on, McGraw-Hill Professional, 2013				
	4. Geo	rge Harman, "Wire Bonding in Microelectronics", 3rd Edition, McGraw-Hill, 2	010			
	5. Andı	rea Chen and Randy Hsiao-Yu Lo, "Semiconductor Packaging: Materials	Interaction and			
	Reliability", CRC Press, 1st Edition, 2017					