Department of Electronics Engineering Proposed Revised Curriculum Structure as per NEP2020 B. Tech. Electronics and VLSI Engineering

Sr. No.	Subject	Code	Schemes	Credits	Notional hours
Seve	enth Semester				
1.	Elective – V	03	55		
2.	Elective – VI	VL4XX	3-0-0	03	55
3.	Elective – VII	VL4XX	3-0-0	03	55
4.	Elective – VIII	VL4XX	3-0-0	03	55
5.	Mandatory core	VL401	0-0-16	08	250
	Project Phase-III				
	Minimum Credit Re	quirement	Total	20	470
6	Minor / Honors (M/H#4)	EC4AA	3-0-2	4/5	70/85
Eigh	th Semester				
1	Mandatory core	VLP08	0-0-40	20	800
	Internship training in				(20x40)
	Industry /Research Organization/ Academic				
	Institute				
			Total	20	800
	N	linimum Re	quirement	20	800
	Minimum Credit Requirement of fu	Ill the progr	am (Total)	165	3810

*NPTEL, SWAYAM and other Massive Open Online Courses (MOOC) approved by DAAC. As per 66th IAAC, Dated 20th March 2024, Resolution No. 66.34 and 61st Senate resolution No. 4, 25th April, 2024

Subject Pool:

B. Tech.	EVL Elective -V, VI, VII, VIII (3-0-0)			
Sr. No.	Subject	Code	Scheme	Credits
1	Testing and Verification of VLSI Circuits	VL421	3-0-0	3
2	UAV Avionics	VL423	3-0-0	3
3	Processor Architecture	VL425	3-0-0	3
4	Nanoelectronics	VL427	3-0-0	3
5	Robotics Systems	VL429	3-0-0	3
6	Quantum Computing	VL431	3-0-0	3
7	Secure Hardware	VL433	3-0-0	3
8	Biomedical Instrumentation	VL435	3-0-0	3
9	SoC Design	VL437	3-0-0	3
10	CMOS RF IC Design	VL439	3-0-0	3
11	Analog Mixed Signal IC Design	VL441	3-0-0	3
12	Hardware Architectures for Deep Learning	VL443	3-0-0	3
13	Error Correcting Coding	EC427	3-0-0	3
14	Deep Learning	EC435	3-0-0	3

B.Tech. IV (VL) Semester VII TESTING AND VERIFICATION OF VLSI CIRCUITS	Scheme	L	т	Ρ	Credit
VL421		3	0	0	03

		· ·	
1.	Course C	Dutcomes (COs):	
	A I		
	At the er	nd of the course the students will be able to:	
	CO1	Understand test patterns required to detect faults in a sireuit	
	CO1	Understand test patterns required to detect faults in a circuit	
	CO2	Demonstrate the testability of a circuit	
	CO3	Implement methods/techniques to improve the testability of digital circuits	
	CO4	Analyse Logic BIST circuits	
	CO5	Design the formal verification techniques	
2.	Syllabus		
	INTROD	JCTION	(08 Hours)
	-	f Testing And Verification In VLSI Design Process, Issues In Test And Verifica mbedded Cores And SOCs	tion Of Complex
	VLSI TES	TING OF FAULT MODELS	(20 Hours)
		entals Of Automatic Test Pattern Generation, Design For Testability, Scan Design Indary Scan, System Testing and Test For SOC, Delay Fault Testing	gn, Test Interface
	Mu TEST	ING OF LOGIC AND MEMORIES	(10 Hours)
	Test Au Approac	tomation, Design Verification Techniques Based On Simulation, Analytic hes	cal And Formal
	VERIFICA	ATION	(07 Hours)
		al Verification, Timing Verification, Formal Verification, Basics of Equivalence hecking, Hardware Emulation	ce Checking And
		(Total Co	ntact Hours: 45)
3.	Books Re	ecommended	
	Sign 2. Abra Des	hnell M. and Agrawal V. D., "Essentials Of Electronic Testing For Digital, Memor al VLSI Circuits", BS Publication,2015. amovici M., Breuer M. A. and Friedman A. D., "Digital Systems Testing And Test ign",IEEE Press,1990. Seligman, Tom Schubert and M V Achutha Kiran Kumar, "Formal Verification	able
	Too 4. Rasl Tecl	Ikit for Modern VLSI Design ", Morgan Kaufmann Publisher, 2023 hinkar P., Paterson and Singh L., "System-On-A-Chip Verification-Methodology hniques", Kluwer Academic Publishers, 2001. H. E. Weste and David Harris, "Principles Of CMOS VLSI Design", Addison Wesle	And
L		ion,2004	cy, 51u

B.Tech. IV (VL) Semester VII UAV Avionics System	Scheme	L	т	Ρ	Credit
VL423		3	0	0	03

1.	Course O	utcomes (COs):	
	At the en	d of the course the students will be able to:	
	C01	Describe avionics components' working and interfacing	
	CO2	Relate for different avionics components and their interfacing	
	CO3	Illustrate the data communication between different avionics components	
	CO4	Explain GNSS signal processing flow in SoCs	
	CO5	Design and develop basic IPs and codes in SoC for GNSS receiver and commu	unication
	CO6	transceiver Implement system design for positioning of drones using SoCs	
2.	Syllabus:		
	Working	of UAV Avionics systems	(14 Hours)
	detection Sensors: Voltage	c Speed Controllers, Drone Motors, Ranging Sensors: Light detection and rangin and ranging (LADAR), Synthetic Aperture radar (SAR), Homing Radar, Position Gyroscope, accelerometer, magnetometer; Pressure sensor, velocity senso sensors, DC-DC Converters, Telemetry Communication Modules, Remote Flight controller and mission controller onboard computer.	ning and Motion or, Current and
	UAV Emb	edded Controller and Software	(14 Hours)
	Ultrasoni Interfacin System in Motion p	al protocols like I2C, UART, and SPI; Sensor Interfacing: Accelero/Gyro/Magneto c distance sensors, Infrared distance sensors, Lidar, pressure sensor, velocity s ng: BLDC motor, Servo motor, Solenoid Valve, Encoder DC motor, Gimble; Batte nterfacing, Flight control software, Mission Control software, GNSS module inter peripheral interfacing: Motors, Motor Drivers, Motor Shields, ADC, DAC and ng, remote data logging, Introduction to ROS, Gazebo, and Mission Planner.	sensor; Actuator ery management erfacing, Robotic
	SoC-base	d GNSS receiver	(11 Hours)
	and Progr for PL sec receiver A between	ion to SoC with RF front ends, Example of SoC designs, architecture of Proce rammable logic sections, data interchange between PS and PL, Implementation tion including controlling RF front-end and digital control and data channels, FI Acquisition and Tracking algorithms, PL section system design and integration, PL and PS, Implementation of control routines in PS section, AXI-based program PL section, testing of PL and PS section design, PS-PL integrated based band s receiver.	on of control IPs PGA based GNSS Interface design nming to control
	SoC-base	d Telemetry module	(6 Hours)
	of RF sign section, [telemetry transceiver design, radio communication aspect of the transceiver, al transmitter and receiver in PL section, Implementation of modulator and de DMA controller implementation for data exchange between PS and PL, Imple to get send/receive data between PS/PL and UART interface of PS section, test	modulator in PL mentation of PL
		(Total Contact	Time: 45 Hours)

3.	Boo	ks Recommended
	1.	Reg Austin, "Unmanned Aircraft Systems", 1st Edition, Willy Publication 2011
	2.	R.P.G. Collinson, "Introduction to Avionics Systems", 3rd Edition Springer Dordrecht Heidelberg London New York 2013
	3.	Andey Lennon, "Basics of R/C Model Aircraft Design", 1st Edition, 1996, Model Airplane News Publication
	4.	John Baichtal, Building your own Drone: A begginers' Guide to Drones,UAVs, and ROVs, 2015, 1st Edition.
	5.	Clive Max Maxfield, "The Design Warrior's Guide to FPGAs", 1st Edition, Newnes, Elsevier, Oxford OX2 8DP, UK
4.	Ref	erence Material
	1.	https://docs.xilinx.com/v/u/en-US/dh0050-zynq-7000-design-overview-hub
	2.	https://xilinx.github.io/video-sdk/v1.5/c_apis.html
	3.	https://digilent.com/reference/vivado/getting-started-with-ipi/2018.2
	4.	https://www.dgca.gov.in/digigov-portal/?dynamicPage=dynamicPdf/
		130650715&maincivilAviationRequirements/6/0/viewDynamicRulesReq

B.Tech. IV (VL) Semester VII PROCESSOR ARCHITECTURE	Scheme	L	т	Р	Credit
VL425		3	0	0	03

1.	Course	Outcomes (COs):	
	At the e	nd of the course the students will be able to:	
	CO1	Discuss different processor architectures and system-level design processes.	
	CO2	Demonstrate the components and operation of a memory hierarchy and performance issues influencing its design.	the range of
	CO3	Analyze the organization and operation of current generation parallel com including multiprocessor and multicore systems.	puter systems,
	CO4	Evaluate the principles of I/O in computer systems, including viable mechanis secondary storage organization.	sms for I/O and
	CO5	Develop systems programming skills in the content of computer system organization.	m design and
2.	<u>Syllabu</u>	<u>5:</u>	
	COMPU	TER ABSTRACTIONS AND TECHNOLOGY	(04 Hours)
		ogies for building processors and memory, Performance, Power wall, the ssors to Multiprocessors.	he switch from
	INSTRU	CTION SET ARCHITECTURE OF 64-BIT RISC-V	(08 Hours)
	RISC-V support	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures.	aking decisions,
	RISC-V support	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures.	aking decisions,
	RISC-V support instruct PIPELIN An over Control	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures.	aking decisions, parallelism and (11 Hours) g versus Control,
	RISC-V support instruct PIPELIN An over Control Pipeline	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures. ING view of pipelining, pipelined data-path and control, Data hazards: Forwarding hazards, Exceptions, Parallelism via instructions, Real stuff: ARM CortexA53 a	aking decisions, parallelism and (11 Hours) g versus Control,
	RISC-V support instruct PIPELIN An over Control Pipeline PARALL Parallel multipre Multipre	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures. ING rview of pipelining, pipelined data-path and control, Data hazards: Forwarding hazards, Exceptions, Parallelism via instructions, Real stuff: ARM CortexA53 a es, Case study: ILP and matrix multiply.	aking decisions, parallelism and (11 Hours) g versus Control, and Intel Core i7 (13 Hours) shared memory multiprocessors, PU, Case study: s, Real stuff: The
	RISC-V support instruct PIPELIN An over Control Pipeline PARALL Parallel multipro Multipro ARM Co	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures. ING view of pipelining, pipelined data-path and control, Data hazards: Forwarding hazards, Exceptions, Parallelism via instructions, Real stuff: ARM CortexA53 a es, Case study: ILP and matrix multiply. EL PROCESSORS programs, Flynn's taxonomy, Hardware multithreading, multicore and s ocessors, Graphics processing units, Clusters and message passing in ocessor networks, Benchmarking of Intel Core i7 960 and NVIDA Tesla Glo ocessors and matrix multiply, Cache coherence, Advanced Cache optimizations	aking decisions, parallelism and (11 Hours) g versus Control, and Intel Core i7 (13 Hours) shared memory multiprocessors, PU, Case study: s, Real stuff: The
	RISC-V support instruct PIPELIN An over Control Pipeline Parallel multipre Multipre ARM Co STORAC	addressing modes, instruction types, logical operations, instructions for m ing procedures, RISC-V addressing for Wide Immediate and addresses, ions, comparison with MIPS and x86 Architectures. ING view of pipelining, pipelined data-path and control, Data hazards: Forwarding hazards, Exceptions, Parallelism via instructions, Real stuff: ARM CortexA53 a es, Case study: ILP and matrix multiply. EL PROCESSORS programs, Flynn's taxonomy, Hardware multithreading, multicore and es ocessors, Graphics processing units, Clusters and message passing ocessor networks, Benchmarking of Intel Core i7 960 and NVIDA Tesla Gl ocessors and matrix multiply, Cache coherence, Advanced Cache optimizations ortex-A53 and Intel Core i7 memory hierarchy, Case study: Cache blocking and n	aking decisions, parallelism and (11 Hours) g versus Control, and Intel Core i7 (13 Hours) shared memory multiprocessors, PU, Case study: s, Real stuff: The natrix multiply. (09 Hours)

3.	<u>Boo</u>	ks Recommended:
	1.	David A. Patterson, John L. Hennessy, "Computer Organization and Design: The Hardware
		Software Interface [RISC-V Edition]", The Morgan Kaufmann Series in Computer Architecture and Design, 2017
	2.	John L Hennessy, "Computer architecture: a quantitative approach", 6th Ed., Morgan Kaufmann Publishers, 2019
	3.	Leander Seidlitz, "RISC-V ISA Extension for Control Flow Integrity", Technische Universität München, 2019
	4.	Andrew Waterman, KrsteAsanović, The RISC-V Instruction Set Manual: Volume I: User-Level ISA, riscv.org, 2017
	5.	Andrew Waterman, KrsteAsanović, The RISC-V Instruction Set Manual: Volume II: Privileged Architecture, riscv.org, 2017
4.	<u>Ref</u>	erence Book:
	1.	William James Dally, Brian Patrick Towles, "Principles and Practices of Interconnection Networks", Morgan Kaufmann, Year: 2004
	2.	Bernard Goossens, "Guide to Computer Processor Architecture: A RISC-V Approach, with High- Level Synthesis", Springer Nature, 2023

B.Tech. IV (VL) Semester VII NANOELECTRONICS	Scheme	L	т	Ρ	Credit
VL427		3	0	0	03

1.	Course C	Dutcomes (COs):	
	At the er	nd of the course the students will be able to:	
	C01	Define various carrier transport mechanisms, properties of semiconductor novel devices using mathematical equations.	
	CO2	Describe the physics needed for special classes of nanoelectronic dev applications.	ices and their
	CO3	Illustrate the working of various nanoelectronic devices.	
	CO4 CO5	Analyse various nanoelectronic devices. Design novel devices, processes and applications based on them.	
2.	Syllabus		
	FUNDAN	IENTALS OF NANOSCALE PHYSICS	(12 Hours)
	-	vn and Bottom-Up Approach, Potential of Nanotechnology and Nanoelec , Quantum Mechanics of Electrons, Free and Confined Electrons, Quantum Str	
	BAND TH	IEORY OF SOLIDS	(09 Hours)
		s in Periodic Potential, Kronig-Penney Model of Band Structure, Band T e and Carbon Nanotubes.	heory of Solids,
	TUNNE	L JUNCTION AND APPLICATIONS OF TUNNELING	(06 Hours)
	Tunnellir	ng Through a Potential Barrier, Potential Energy Profiles for Material interface ng: Field Emission, Gate-Oxide Tunnelling and Hot Electron Effects in MOSFETS, funnelling, and The Resonant Tunnelling Diode.	
	COULO	MB BLOCKADE AND THE SINGLE-ELECTRON TRANSISTOR	(06 Hours)
		Blockade: Coulomb Blockade in a Nanoscale capacitor, Tunnel Junctions, by a Current Source, and Coulomb Blockade in Quantum dot circuit, Single-Ele	
	QUANTU	JM STRUCTURES	(12 Hours)
	Quantun	n Wells, Quantum Wires and Quantum Dots, Ballistic Transport and Spin Trans	sport.
		Total Contact	Hours: 45 Hours
3.	Books Re	Total Contact ecommended	Hours: 45 Hours
3.			
3.	1. Har 2. Rog	ecommended nson, G. W., "Fundamentals of Nanoelectronics", 1st Ed., Pearson Education, 2 gers, Pennathur and Adams, "Nanotechnology: Understanding Small Systems"	2009.
3.	1. Har 2. Rog Tay	ecommended nson, G. W., "Fundamentals of Nanoelectronics", 1st Ed., Pearson Education, 2 gers, Pennathur and Adams, "Nanotechnology: Understanding Small Systems" ler and Francis Group, 2008.	2009.
3.	 Har Rog Tay Ma 	ecommended nson, G. W., "Fundamentals of Nanoelectronics", 1st Ed., Pearson Education, 2 gers, Pennathur and Adams, "Nanotechnology: Understanding Small Systems" ler and Francis Group, 2008. halik N. P., "Micromanufacturing and Nanotechnology", Springer, 2006	2009. , CRC Press,
3.	1. Har 2. Rog Tay 3. Ma 4. Koh	ecommended nson, G. W., "Fundamentals of Nanoelectronics", 1st Ed., Pearson Education, 2 gers, Pennathur and Adams, "Nanotechnology: Understanding Small Systems" ler and Francis Group, 2008.	2009. , CRC Press,

B.Tech. IV (VL) Semester VII ROBOTICS SYSTEMS	Scheme	L	т	Ρ	Credit
VL429		3	0	0	03

	<u>Course C</u>	Outcomes (COs):					
	At the er	d of the course the students will be able to:					
	C01	Describe kinematics and dynamics of robotic system,					
	CO2	Estimate state of robotics system using Gaussian filters,					
	CO3	Compare approaches for robot motion planning and navigation,					
	CO4	Analyze probabilistic mathematics for robotic control, and					
	CO5	Design and control open chain robotics arms.					
2.	<u>Syllabus</u>						
	Basics	of Robotics	(10 Hours)				
	Configur	ation space, Degrees of freedom, Robotics joints, Grubler's formula, Con	figuration space				
	topology	, Velocity constraints, Task space and workspace, Vectors in different referen	nce frames, Rigid				
	body mo	tion in plane, Rotation matrice, Angular and linear velocities, Exponentia	I coordinates of				
	rotation,	Rodrigues' formula, Transformation matrices, Spatial and body twists, Wrenc	hes.				
	Kinema	tics of Robots	(08 Hours)				
	Onen ch	ain forward transformation kinematics. Product of exponential formula, comp					
	Open chain forward transformation kinematics, Product of exponential formula, computing open chain end-effector transformation, Open chain forward velocity kinematics, Jacobian, Manipulator ellipsoid,						
			•				
	Manipulator Jacobian, Space and body Jacobian, Inverse transformation kinematics of 6R-PUMA Arm, Euler Angles, Newton-Raphson method, inverse velocity kinematics using Jacobian.						
			I				
	-	cs of Robots	(08 Hours)				
	Coriolis a Dynamic	an Dynamics: Formulation for open chain dynamics, Derivation for 2-R open cha and centripetal terms, Generalized Lagrangian dynamics for n-link open chai					
	Inverse N	s: Classical formulation of wrench for single rigid body, Euler's equation, Inert rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm.	ia matrix, Inertia				
		rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie	ia matrix, Inertia				
	Plannin	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm.	ia matrix, Inertia bracket of twist, (08 Hours)				
	Plannin Trajector	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling,				
	Plannin Trajector Motion	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optim	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and				
	Plannin Trajector Motion collision	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optin Planning: types, properties, and methods, Configuration space obstacles'	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and				
	Plannin Trajector Motion collision Probabi	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optim Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours)				
	Plannin Trajector Motion collision Probabi Basics: R	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optin Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat listic Robotics	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours) ative laws, Belief				
	Plannin Trajector Motion collision Probabi Basics: R distribut	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optim Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat listic Robotics evisiting basics of probability, Environment interaction, Probabilistic genera	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours) tive laws, Belief extended Kalman				
	Plannin Trajector Motion collision Probabi Basics: R distribut filter (El	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optin Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat listic Robotics evisiting basics of probability, Environment interaction, Probabilistic genera ons, Bayes filters, Kalman filter (KF): theory and algorithm, derivation of KF, E	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours) tive laws, Belief extended Kalman an Filter (UKF):				
	Plannin Trajector Motion collision Probabi Basics: R distribut filter (El Lineariza	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optim Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat listic Robotics evisiting basics of probability, Environment interaction, Probabilistic genera ons, Bayes filters, Kalman filter (KF): theory and algorithm, derivation of KF, E KF): Linearization via Taylor expansion, EKF algorithm, Unscented Kalma	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours) tive laws, Belief extended Kalman an Filter (UKF): (IF): Canonical				
	Plannin Trajector Motion collision Probabi Basics: R distribut filter (El Lineariza paramet	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optin Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat listic Robotics evisiting basics of probability, Environment interaction, Probabilistic genera ons, Bayes filters, Kalman filter (KF): theory and algorithm, derivation of KF, E (F): Linearization via Taylor expansion, EKF algorithm, Unscented Kalma tion Via the unscented transform, UKF algorithm, Information filter (EIF): Algor	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours) tive laws, Belief extended Kalman an Filter (UKF): (IF): Canonical				
3.	Plannin Trajector Motion collision Probabi Basics: R distribut filter (El Lineariza paramet of EIF.	rotated and translated frames, Spatial inertia matrix, spatial momentum, Lie lewton Euler dynamics for open chain derivation and algorithm. g and Navigation y generation: P2P trajectories, Polynomial via point trajectories, Time optin Planning: types, properties, and methods, Configuration space obstacles' detection, Graph and trees, Grid method path planners, Sampling method pat listic Robotics evisiting basics of probability, Environment interaction, Probabilistic genera ons, Bayes filters, Kalman filter (KF): theory and algorithm, derivation of KF, E (F): Linearization via Taylor expansion, EKF algorithm, Unscented Kalma tion Via the unscented transform, UKF algorithm, Information filter (EIF): Algor	ia matrix, Inertia bracket of twist, (08 Hours) nal time scaling, localization and th planners. (11 Hours) tive laws, Belief extended Kalman an Filter (UKF): (IF): Canonical rithm, Derivation				

- Alonzo Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press, 2013.
 - 3. Kevin M. Lynch and Frank C. Park, Modern Robotics: Mechanics, Planning, and Control, Cambridge University Press, 2017
 - 4. Sebastian Thrun, Wolfram Burgard, Dieter Fox, Probabilistic Robotics, MIT Press, 2005.
 - 5. Steven M. LaValle: Planning Algorithms. Cambridge University Press, 2006

B.Tech. IV (VL) Semester VII QUANTUM COMPUTING	Scheme	L	т	Ρ	Credit
VL431		3	0	0	03

1	Course Out	comes (COs):	
	At the end o	of the course, students will be able to:	
	CO1 1	o describe the basics of quantum computing	
		o distinguish between various types of qubits	
		o manipulate qubits using quantum gates	
		o analyse quantum algorithms	
		o understand and design quantum computers	
2.	<u>Syllabus:</u>		
	QUANTUM	MECHANICS FOR QUANTUM COMPUTING	(12 Hours)
	Linear Algeb	ora, The postulates of Quantum mechanics, The density operator, The Schmidt	decomposition
	and purifica	ations, Qubits And The Framework Of Quantum Mechanics, Models for con	nputation, The
	analysis of c	computational problems.	
	QUANTUM	CIRCUITS	(12 Hours)
	Quantum al	gorithms, Single qubit operations, Controlled operations, Measurement, Unive	ersal quantum
		lation of quantum systems.	·
	COMPONE	NTS FOR QUNATUM COMPUTING	(09 Hours)
	Different ty Memory etc	pes of Qubits and their operation, Practical Quantum gates, Quantum Register c.	rs, Quantum
	QUANTUM	COMPUTERS	(12 Hours)
	quantum co	nciples, Conditions for quantum computation, Quantum Hardware: Harm	
	traps, Nucle	omputer, Optical photon quantum computer, Optical cavity quantum electro ear magnetic resonance, other implementation schemes.	odynamics, Ion
	traps, Nucle	ear magnetic resonance, other implementation schemes.	odynamics, Ion tact Hours: 45)
3.	traps, Nucle Books Reco	ear magnetic resonance, other implementation schemes. (Total Cont	
3.	Books Reco	ear magnetic resonance, other implementation schemes. (Total Cont	tact Hours: 45)
3.	Books Reco	ear magnetic resonance, other implementation schemes. (Total Cont mmended:	tact Hours: 45)
3.	Books Reco	ear magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxforce	tact Hours: 45)
3.	Books Reco 1. Michae Annive 2. P Kaye Press,	Ar magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Informati ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007	tact Hours: 45) ion: 10th d University
3.	Books Reco 1. Michae Annive 2. P Kaye Press, 3. David I	ear magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007 McMahon, "Quantum computing explained", Wiley-interscience, John Wiley &	tact Hours: 45) ion: 10th d University
3.	Books Reco 1. Michae Annive 2. P Kaye Press, 3. David I Publica	Ar magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007 McMahon, "Quantum computing explained", Wiley-interscience, John Wiley & ation 2008	tact Hours: 45) ion: 10th d University & Sons, Inc.
3.	Books Reco 1. Michae Annive 2. P Kaye Press, 3. David I Publica 4. P. Krar	ear magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007 McMahon, "Quantum computing explained", Wiley-interscience, John Wiley & ation 2008 htz, M. Kjaergaard , F. Yan, T.P. Orlando , S. Gustavsson and W. D. Oliver, "A Qu	tact Hours: 45) ion: 10th d University & Sons, Inc.
3.	Books Reco 1. Michae Annive 2. P Kaye Press, 3. David I Publica 4. P. Krar Engine	Ar magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007 McMahon, "Quantum computing explained", Wiley-interscience, John Wiley & ation 2008 htz, M. Kjaergaard , F. Yan, T.P. Orlando , S. Gustavsson and W. D. Oliver, "A Qu er's Guide to Superconducting Qubits", 2019	tact Hours: 45) ion: 10th d University & Sons, Inc.
3.	Books Reco 1. Michae Annive 2. P Kaye Press, 3. David I Publica 4. P. Krar Engine 5. Arthur	ear magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007 McMahon, "Quantum computing explained", Wiley-interscience, John Wiley & ation 2008 htz, M. Kjaergaard , F. Yan, T.P. Orlando , S. Gustavsson and W. D. Oliver, "A Qu	tact Hours: 45) ion: 10th d University & Sons, Inc.
3.	Books Reco 1. Michae Annive 2. P Kaye Press, 3. David I Publica 4. P. Krar Engine 5. Arthur 2012	Ar magnetic resonance, other implementation schemes. (Total Cont mmended: el A. Nielsen, Isaac L. Chuang, "Quantum Computation and Quantum Information ersary Edition", Cambridge University Press; 1st edition, 2011 , R Laflamme and M Mosca, "An Introduction to Quantum Computing", Oxford 2007 McMahon, "Quantum computing explained", Wiley-interscience, John Wiley & ation 2008 htz, M. Kjaergaard , F. Yan, T.P. Orlando , S. Gustavsson and W. D. Oliver, "A Qu er's Guide to Superconducting Qubits", 2019	tact Hours: 45) ion: 10th d University & Sons, Inc. iantum er Boston,

B.Tech. IV (VL) Semester VII SECURE HARDWARE	Scheme	L	т	Р	Credit
VL433		3	0	0	03

1.	Course	<u>Outcomes (COs):</u>						
	At the e	nd of the course the students will be able to:						
	C01	Identify different hardware security primitives						
	CO2	Discuss the side-channel attacks on hardware						
	CO3	Employ testability and verification for secure hardware						
	CO4	Analyse the modern IC design and manufacturing practices						
	CO5	Relate hardware trojans and infrastructure security						
2.	<u>Syllabus</u>	<u>3:</u>						
	USEFUL	HARDWARE SECURITY PRIMITIVES:	(06 Hours)					
	Cryptog	raphic Hardware and their Implementation, Optimization of Cryptographic Hardw	are on FPGA,					
	Physical	Physically Unclonable Functions (PUFs), PUF Implementations, PUF Quality Evaluation, Design						
	Techniques to Increase PUF Response Quality							
	SIDE-CHANNEL ATTACKS ON CRYPTOGRAPHIC HARDWARE (08 Hours)							
	Basic Idea, Current-measurement based Side-channel Attacks (Case Study: Kocher's Attack on DES),							
	Design Techniques to Prevent Side-channel Attacks, Improved Side-channel Attack Algorithms (Template							
	Attack, etc.), Cache Attacks							
	TESTAB	ILITY AND VERIFICATION OF CRYPTOGRAPHIC HARDWARE:	(06 Hours)					
	Fault-to	lerance of Cryptographic Hardware, Fault Attacks, Verification of Finite-field Arith	metic Circuits					
	MODER	N IC DESIGN AND MANUFACTURING PRACTICES AND THEIR IMPLICATIONS	(10 Hours)					
	Hardwa	re Intellectual Property (IP) Piracy and IC Piracy, Design Techniques to Prevent IP	and IC Piracy,					
	Using Pl	JFs to prevent Hardware Piracy, Model Building Attacks on PUFs (Case Study: SVN	A Modeling of					
	Arbiter	PUFs, Genetic Programming based Modeling of Ring Oscillator PUF)						
	HARDW	ARE TROJANS:	(08 Hours)					
	Hardwa	re Trojan Nomenclature and Operating Modes, Countermeasures Such as Design	and					
	Manufa	Manufacturing Techniques to Prevent/Detect Hardware Trojans, Logic Testing and Side-channel Analysis						
	based T	echniques for Trojan Detection, Techniques to Increase Testing Sensitivity						
	INFRAS	FRUCTURE SECURITY:	(07 Hours					
	Impact of	of Hardware Security Compromise on Public Infrastructure, Defense Techniques (Case Study:					
	Smart-G	Smart-Grid Security)						
		(Total Contact	Time: 45 Hours					

3.	Books Recommended:
	 Ahmad-Reza Sadeghi and David Naccache (eds.): Towards Hardware-intrinsic Security: Theory and Practice, Springer, 2010
	 Ted Huffmire, Cynthia Irvine, Thuy D. Nguyen, Timothy Levi, Ryan Kastner, Timothy Sherwood, "Handbook of FPGA Design Security", Springer, 2010.
	 Stefan Mangard, Elisabeth Oswald, Thomas Popp: "Power analysis attacks - revealing the secrets of smart cards", Springer, 2007.
	4. Mark Joye and Michael Tunstall, "Fault Analysis in Cryptography", 2012
	5. D. Mukhopadhyay and R. S. Chakraborty, "Hardware Security: Design, Threats and Safeguards", CRC
	Press, 2014
4.	Reference Books:
	1. A. Das and C. E. Veni Madhavan, "Public-Key Cryptography: Theory and Practice", Pearson
	Education Asia, 2009

B.Tech. IV (VL) Semester VII BIOMEDICAL INSTRUMENTATION	Scheme	L	т	Ρ	Credit
VL435		3	0	0	03

1.	<u>Course</u>	Outcomes (COs):				
	At the e	nd of the course the students will be able to:				
	CO1	Model biological systems.				
	CO2	Comprehend the principles of transducers in bio-instrumentation				
	CO3	Analyze the ECG, EEG and EMG				
	CO4	Measure bio medical signal parameters.				
	CO5	Study pace makers, defibrillators, surgical instruments etc.				
2.	<u>Syllabus</u>	<u>5:</u>				
	ANATO	MY AND PHYSIOLOGY	(06 Hours)			
	Element	tary Ideas of Cell Structure, Heart and Circulatory System, Control Nervous S	ystem, Musclo-			
	Skeletal	System, Respiratory System Body Temperature and Reproduction System.				
	CLASSIF	ICATION OF BIOMEDICAL EQUIPMENT	(02 Hours)			
	Diagnos	tic, Therapeutic and Clinical Laboratory Equipment.				
	BIOELEC	CTRIC SIGNALS AND THEIR RECORDING	(09 Hours)			
	Bioelectric Signals (ECG, EMG, ECG, EOG & ERG) and Their Characteristics, Bio- Electrodes, Electrodes					
	Bioelect	ric Signals (ECG, EMG, ECG, EOG & ERG) and Their Characteristics, Bio- Electro	des, Electrodes			
		ric Signals (ECG, EMG, ECG, EOG & ERG) and Their Characteristics, Bio- Electronteriate and the section the section the section of the section				
	Tissue Ir					
	Tissue Ir for ECG, TRANSE	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro , EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION	odes, Electrodes (10 Hours)			
	Tissue Ir for ECG, TRANSD Resistive	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit	odes, Electrodes (10 Hours) cy, (Gamstrers),			
	Tissue Ir for ECG, TRANSE Resistive Respirat	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov	odes, Electrodes (10 Hours) cy, (Gamstrers), rement (LVDT),			
	Tissue Ir for ECG, TRANSD Resistive Respirat Capaciti	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Trans	odes, Electrodes (10 Hours) cy, (Gamstrers), vement (LVDT), nsducers, Pulse			
	Tissue Ir for ECG, TRANSE Resistive Respirat Capaciti Transdu	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov	odes, Electrodes (10 Hours) cy, (Gamstrers), vement (LVDT), nsducers, Pulse			
	Tissue Ir for ECG, TRANSD Resistive Respirat Capaciti Transdu Flowme	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Trans icers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode).	odes, Electrodes (10 Hours) cy, (Gamstrers), rement (LVDT), nsducers, Pulse Jltrasonic Blood			
	Tissue Ir for ECG, TRANSE Resistive Respirat Capaciti Transdu Flowme BIOLDE	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Tran- ticers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES pgical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG	odes, Electrodes (10 Hours) (Gamstrers), vement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours)			
	Tissue Ir for ECG, TRANSE Resistive Respirat Capaciti Transdu Flowme BIOLDE Physiolo Machine	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Tran- ticers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES pgical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG	des, Electrodes (10 Hours) (Gamstrers), rement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) , EMG and EEG			
	Tissue Ir for ECG, TRANSE Resistive Respirat Capaciti Transdu Flowme BIOLDE Physiolo Machine	hterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Trans icers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES ogical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG es. TMONITORING SYSTEM	odes, Electrodes (10 Hours) (Gamstrers), vement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) , EMG and EEG (05 Hours)			
	Tissue Ir for ECG, TRANSC Resistive Respirat Capaciti Transdu Flowme BIOLDE Physiolo Machine PATIEN Heart R	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro , EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Trans teers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES ogical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG es.	odes, Electrodes (10 Hours) (Gamstrers), vement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) , EMG and EEG (05 Hours)			
	Tissue Ir for ECG, TRANSE Resistive Respirat Capaciti Transdu Flowme BIOLDE Physiolo Machine Heart R Measure	hterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Tran- ticers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES Digical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG es. T MONITORING SYSTEM ate Measurement, Pulse Rate Measurement, Respiration, Rate Measurement,	odes, Electrodes (10 Hours) (Gamstrers), vement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) , EMG and EEG (05 Hours)			
	Tissue Ir for ECG, Resistive Respirat Capaciti Transdu Flowme BIOLDEC Physiolo Machine PATIEN Heart R Measure	hterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Tran- ticers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, L ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES ogical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG es. T MONITORING SYSTEM ate Measurement, Pulse Rate Measurement, Respiration, Rate Measurement, ement, Microprocessor Applications in Patient Monitoring.	des, Electrodes (10 Hours) (Gamstrers), rement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) , EMG and EEG (05 Hours) Blood Pressure (05 Hours)			
	Tissue Ir for ECG, Resistive Respirat Capaciti Transdu Flowme BIOLDEC Physiolo Machine PATIEN Heart R Measure DEFIBRI Rational Defibrill	hterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Tran- ticers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, L ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES ogical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG es. T MONITORING SYSTEM ate Measurement, Pulse Rate Measurement, Respiration, Rate Measurement, ement, Microprocessor Applications in Patient Monitoring. LLATORS AND PACEMAKERS	des, Electrodes (10 Hours) (9, (Gamstrers), rement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) (06 Hours) Blood Pressure (05 Hours) Safety issues in			
	Tissue Ir for ECG, TRANSC Resistive Respirat Capaciti Transdu Flowme BIOLDE Physiolo Machine PATIEN Heart R Measure DEFIBRI Rational Defibrill Pacema	nterface, Contact Impedance, Effects of High Contact Impedance, Types of Electro , EEG and EMG. DUCERS FOR BIOMEDICAL APPLICATION e Transducers - Muscle Force and Stress (Strain Gauge), Spirometry, Humidit tion (Thermistor), Inductive Transducers: Flow Measurements, Muscle Mov ve Transducers: Heart Sound Measurement, Pulse Pick Up, Photoelectric Trai- icers, Blood Pressure, Oxygen Analyses Piezoelectric Transducers: Pulse Pickup, U ter, Chemcial Transducer: Ag-Agfallas (Electrodes, PH Electrode). CTRIC SIGNAL RECORDING MACHINES Ogical Pre-Amplifier and Specialized Amplifiers, ECG Lead Systems Details of ECG es. T MONITORING SYSTEM ate Measurement, Pulse Rate Measurement, Respiration, Rate Measurement, ement, Microprocessor Applications in Patient Monitoring. LLATORS AND PACEMAKERS le of using Defibrillators, Theory of Defibrillators Circuits, Types of Defibrillators, ators, Theory of Pacemakers, Types of Pacemakers, Pacemaker Circuit, Technical	des, Electrodes (10 Hours) (9, (Gamstrers), rement (LVDT), nsducers, Pulse Jltrasonic Blood (06 Hours) (06 Hours) Blood Pressure (05 Hours) Safety issues in			

Books Recommended:
1 John C. Wahster "Medical Instrumentation" John Wiley, 4th Ed. 2000
1. John. G. Webster, "Medical Instrumentation", John Wiley, 4th Ed., 2009
2. Amit J. Nimunkar, John G. Webster, John William Clark, "Medical Instrumentation Application and
Design", Wiley, 2020.
3. Goddes L. A. and Baker L. E., "Principles of Applied Biomedical Instrumentation", John Wiley, 3rd Ed., 1989.
4. Carr Joseph J. and Brown John M, "Biomedical Instrumentation and Measurement", Pearson, 4th Ed., 2001.
5. Cromwell, "Biomedical Instrument", Prentice Hall, 3rd Ed., 2000.
6. R.S. Khandpur,"Hand book of Medical Instruments", TMH, 2nd Ed., 2003.

Γ

B.Tech. IV (VL) Semester VII SOC DESIGN	Scheme	L	т	Ρ	Credit
EC437		3	0	0	03

1.	Course C	Outcomes (COs):								
	At the er	d of the course the students will be able to:								
	CO1 Design and optimize a modern System-on-a-Chip									
	CO2 Implement both hardware and software solutions, formulate hardware/software trade-									
	offs, and perform hardware/software codesign									
	CO3 Understand and estimate key design metrics and requirements including area, latency, throughput, energy, power.									
	CO4	Have basic exposure to SystemC programming and HLS								
	CO5	Appreciate issues in system-on-chip design associated with Interconnectio	n Structures,							
		performance and power consumption								
2.	<u>Syllabus</u>									
	SOC DES	IGN APPROACH	(08 Hours)							
		Chips and SoC ICs, SoC Design: SoC CPU/IP Cores; Co-processor; Cache; DRA s, Static Timing Analysis (STA), Design for Testability, Verification, Physical De								
	HARDW	ARE-SOFTWARE CO-SYNTHESIS	(08 Hours)							
	Partition	ing, Cycle Time, Die Area-and-Cost, Power, Area-time-Power Trade-offs and	Chip Reliability,							
	Real-tim	e scheduling, hardware acceleration								
		PROTOTYPING AND HLS	(11 Hours)							
		High-Level Language Applications to Hardware, Transaction-Level Modeling								
	-	evel Languages, Hardware Accelerators, Media Instructions, Co-processors,	-							
	-	Iethodology, High-Level Synthesis (C-to-RTL), Hardware Synthesis and Archit ies, Source-Level Optimizations	ecture							
	SOC INT	ERCONNECTION STRUCTURES	(10 Hours)							
	Bus-base	d Interconnection, Bus protocols: AMBA AXI Bus; AXI4-Stream; IBM Core Co	nnect; Avalon,							
	Intercon	nection Structures, Network on Chip - NoC Interconnection and NoC System	s, IP interfacing							
	PERFORI	MANCE / POWER ANALYSIS OF SOCS	(08 Hours)							
		evel modeling and integration, Simulation platform for performance analysis s and examples.	s of SoC/MPSoC,							
		(Total Contac	ct Time: 45 Hours)							
3.	Books Re	ecommended:								
		na Chakravarthi, "A Practical Approach to VLSI System on Chip (SoC) Design- de", Springer, 2020	A Comprehensive							
	Мо	ascricha and N. Dutt, "On-Chip Communication Architectures, System on Ch rgan Kaufmann-Elsevier Publishers, 2008.	ip Interconnect",							
		ting, M., "The Simple art of SoC design", Springer, 2011.								
		chaumont, "A Practical Introduction to Hardware/Software Co-design", Sprin	-							
	5. Gro	tker, T., Liao, S., Martin, G. & Swan, S., "System design with SystemC", Sprin	ger, 2002							

Reference Books:	
1. Ghenassia, F., "Transaction-lev	el modeling with SystemC: TLM concepts and applications for
embedded systems", Springer,	2010
2. Henry Chang, L.R. Cooke, Merr	ll Hunt, Grant Martin, Andrew McNelly, Lee Todd, "Surviving the
SOC Revolution - A Guide to Pla	atform-Based Design", Springer, 1999.
3. Grant Martin, Brian Bailey, And	rew Piziali, "ESL Design and Verification: A Prescription for
Electronic System Level Metho	dology (Systems on Silicon Series)", Morgan Kaufmann, 2007
	 Ghenassia, F., "Transaction-leve embedded systems", Springer, Henry Chang, L.R. Cooke, Merri SOC Revolution - A Guide to Pla Grant Martin, Brian Bailey, And

B. Tech. IV (VL) Semester – VII CMOS RE IC DESIGN	Scheme	L	т	Ρ	Credit
CMOS RF IC DESIGN Scheme EC 439 Scheme				0	03

1.	Course C	<u>Dutcomes (COs):</u>					
	At the end of the course the students will be able to:						
	CO1	Select a transceiver specification appropriate for the communication link.					
	CO2	Demonstrate Analog and Digital Modulation for RF circuits.					
	CO3	Analyze the Low Noise Amplifier (LNA).					
	CO4	Evaluate the appropriate mixers and oscillators for the desired applications.					
	CO5	Design of PLL using appropriate loop filter, phase detector and frequency sy	nthesizer.				
2.	Syllabus						
	INTROD	UCTION TO RF AND WIRELESS TECHNOLOGY:	(08 Hours)				
	Complex	kity, design and applications. Choice of Technology. Basic concepts in RF Des	sign: Nonlinearly				
	-	e Variance, inter-symbol Interference, random processes and Noise. Definition	-				
		namic range, conversion Gains and Distortion, S-parameters with Smith c	•				
	POWER	AMPLIFIERS AND MATCHING NETWORKS	(06 Hours)				
	Class A, AB, B and C Power amplifiers, modulation and characteristics of power amplifiers, Design examples. Impedance transformations and matching; L-matches, Pi- & T-matches, tapped-capacitor match.						
	materi		1				
		DISE AMPLIFIERS	(12 Hours)				
	LOW NO	DISE AMPLIFIERS Pologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation	de CS Stage with				
	LOW NO	ologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac	de CS Stage with				
	LOW NO LNA Top Inductive LNAs Ga MIXERS Design Oscillato	ologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation	de CS Stage with tance-Cancelling (11 Hours) nplementations,				
	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des	pologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation AND OSCILLATORS of Mixers at GHz frequency range. Various Mixers, their working and ir prs: Basic topologies VCO and definition of phase noise. Noise-Power trade-or	de CS Stage with tance-Cancelling (11 Hours) nplementations,				
	LOW NO LNA Top Inductive LNAs Ga MIXERS Design Oscillato VCO des PLL AND	Pologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation AND OSCILLATORS of Mixers at GHz frequency range. Various Mixers, their working and ir prs: Basic topologies VCO and definition of phase noise. Noise-Power trade-of sign. Quadrature and single-sideband generators	(11 Hours) mplementations, ff. Resonatorless (08 Hours)				
	LOW NO LNA Top Inductive LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr	Pologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation AND OSCILLATORS of Mixers at GHz frequency range. Various Mixers, their working and ir prs: Basic topologies VCO and definition of phase noise. Noise-Power trade-of sign. Quadrature and single-sideband generators FREQUENCY SYNTHESIZERS	(11 Hours) (11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power				
	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie	 Pologies: Common-Source Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation AND OSCILLATORS of Mixers at GHz frequency range. Various Mixers, their working and ir pors: Basic topologies VCO and definition of phase noise. Noise-Power trade-of sign. Quadrature and single-sideband generators FREQUENCY SYNTHESIZERS requency Synthesizes: PLLS, Various RF synthesizer architectures and frequency 	(11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power				
	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie	 Provide and a series of the ser	(11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power ne discussion on				
3.	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie available	 Provide and a series of the ser	(11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power				
3.	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie available Books R	Provide Sector Stage with Resistive Feedback, Common Gate, Casco e Degeneration, Variants of Common-Gate LNA, Noise-Cancelling LNAs, Reac in Switching, Band Switching, Differential LNAs, Nonlinearity Calculation AND OSCILLATORS of Mixers at GHz frequency range. Various Mixers, their working and ir prs: Basic topologies VCO and definition of phase noise. Noise-Power trade-of sign. Quadrature and single-sideband generators FREQUENCY SYNTHESIZERS requency Synthesizes: PLLS, Various RF synthesizer architectures and frequency ers design. Linearisation techniques, Design issues in integrated RF filters, Son e CAD tools for RF VLSI design Total Contact Ti	(11 Hours) (11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power ne discussion on				
3.	LOW NO LNA Top Inductive LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie available Books Re 1. T. F	Procession and the procession of the processi	(11 Hours) (11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power ne discussion on				
3.	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie available Books Re 1. T. H 2. B.R	Provide an analysis of the second of the	(11 Hours) (11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power ne discussion on				
3.	LOW NO LNA Top Inductive LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie available 1. T. H 2. B.R 3. B.R	Provide Enclosed Enclosed Provide Enclosed E	(11 Hours) (11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power ne discussion on me: = 45 Hours				
3.	LOW NO LNA Top Inductiv LNAs Ga MIXERS Design Oscillato VCO des PLL AND Radio Fr Amplifie available Books Re 1. T. H 2. B.R 3. B.R 4. C.C	Processing and an analysis of common-Gate LNA, Noise-Cancelling LNAs, Reaction Switching, Band Switching, Differential LNAs, Nonlinearity Calculation AND OSCILLATORS Of Mixers at GHz frequency range. Various Mixers, their working and irrors: Basic topologies VCO and definition of phase noise. Noise-Power trade-origin. Quadrature and single-sideband generators PREQUENCY SYNTHESIZERS equency Synthesizes: PLLS, Various RF synthesizer architectures and frequency for RF VLSI design Total Contact Ti ecommended 1. Lee, "The Design of CMOS RF Integrated Circuits", Cambridge, 2012. azavi, "RF Microelectronics", Pearson Education, 2013. azavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001.	(11 Hours) (11 Hours) mplementations, ff. Resonatorless (08 Hours) dividers, Power ne discussion on me: = 45 Hours				

B. Tech. IV (VL) Semester – VII ANALOG MIXED SIGNAL IC DESIGN	Scheme	L	Т	Р	Credit
EC 441		3	0	0	03

1.	Course O	utcomes (COs):				
	At the en	d of the course the students will be able to:				
	CO1	Understand sample and hold circuits based on CMOS and BiCMOS. Comp contrast various S/H circuits.	are and			
	CO2	Apply advanced techniques for bandgap references, comparators, curren operational amplifiers.	t mirrors and			
	CO3	Evaluate concepts of Oversampled ADCs, Noise shaping and decimation f Propose and design sigma-delta architecture based on specification	iltering.			
	CO4 CO5	Analyze a variety of data converters. Compare architectures based on var Design of various mixed signal blocks	ious metrics.			
2.	Syllabus					
	SAMPLE A	AND HOLD CIRCUITS	(8 Hours)			
	of CMOS	hold and trans-linear circuits - performance and testing of sample and hold of S/H circuits, bipolar and BiCMOS S/H circuits, trans-linear gain cell and mul circuits – op-amps, capacitors, switches, non-overlapping clocks	•			
	SWITCHE	D CAPACITOR CIRCUITS	(6 Hours)			
	Basic operation and analysis of switched capacitor circuits, resistor equivalence of a switched capacitor, noise in switched-capacitor circuits. Comparators - specifications, op-amp as a comparator, latched comparators, examples of CMOS comparators					
	A TO D AI	ND D TO A CONVERTERS	(12 Hours)			
	Data convertors - ideal D/A and A/D convertors, quantization noise, accuracy and linearity. Nyquist rate DAC - Decoder-based converter, Binary-scaled converters, Thermometer-code converters, Hybrid converters. Nyquist rate ADC - Successive-approximation converters, Algorithmic (or cyclic) A/D Converter, Pipelined A/D converters, Two-step A/D converters, Interpolating A/D converters, folding A/D converters, time-interleaved A/D converters					
	OVERSAN	IPLED DATA CONVERTERS	(12 Hours)			
	assumption noise sha realizatio	oling ADCs - Oversampling without noise shaping - quantization noise mode on, • oversampling advantage, the advantage of 1-bit D/A converters. Or oping - noise-shaped delta-sigma modulator, first-order noise shaping, so n of a first-order A/D converter, quantization noise power of 1-bit mo ures, Digital decimation filters, Multi-bit oversampling converters	versampling with vitched-capacitor			
	MIXED SI	GNAL SUBCIRCUITS	(7 Hours)			
		d PLL models, Design of PLL's and DLL's and frequency synthesizers, VCO, ctronic oscillators	Jitter and phase			
		Total Contact T	ime: = 45 Hours			

3.	Books Recommended
	 Tony Chan Carusone, David A. Johns, Kenneth W. Martin, "Analog Integrated Circuit Design", 2nd Edition, John Wiely & Sons, 2012.
	2. B. Razavi, "Principles of Data Conversion System Design", 1st Edition, Wiley-IEEE Press, 1994
	3. R. J. Baker, "CMOS Mixed Signal circuit Design", 2nd Edition, Wiley 2008
	4. M.Gustavsson, J. J. Wikner, and N. N. Tan, "CMOS Data Conversion for Communications", Kluwer 2000.
	 Emad N. Farad and Mohamed I. Elmasry, "Mixed Signal VLSI Wireless Design: Circuits and Systems", Kluwer 2002

B.Tech. IV (VL) Semester VII HARDWARE ARCHITECTURES FOR DEEP LEARNING	Scheme	L	т	Р	Credit
VL443		3	0	0	03

1.	<u>Course</u>	Dutcomes (COs):	
	At the e	nd of the course the students will be able to:	
	CO1	Describe approximate data representation and its significance for deep learn	ing
	CO2	Discuss model sparsity for dense accelerator	<u> </u>
	CO3	Discover the usage of various computation support for hardware architectur	e
	CO4	Analyze the embedded system implementation of convolution neural netwo	
	CO5	Design iterative CNN solution for low power and real-time systems	
2.	Syllabus	<u>:</u>	
	DEEP LE	ARNING AND APPROXIMATE DATA REPRESENTATION	(08 Hours)
	Introdu	tion – Background, Stochastic computing, Deterministic low-di	screpancy bit-
	streams	,Convolutional neural networks, Convolutional neural networks, Related work,	Proposed hybrid
		it-stream design, Multiplications and accumulation, Handling negative weigh	
	-	Performance comparison, Cost comparison, Binary neural networks, Binary and	-
		al networks, Binarized and ternarized neural networks, NN optimization techn	
		entation of BNNs	· • • • • • • • • • • • • • • • • • • •
	DEEP LE	ARNING AND MODEL SPARSITY	(10 Hours)
	Differer	t types of sparsity methods, Software approach for pruning, Hard prunin	g, Soft pruning,
	structur	al sparsity, and hardware concern, Questioning pruning, Hardware supp	ort for sparsity,
	Advanta	ges of sparsity for dense accelerator, Supporting activation sparsity, Supporting	g weight sparsity,
	Support	ing both weight and activation sparsity, Efficient inference engine	
		TATION REUSE-AWARE ACCELERATOR FOR NEURAL NETWORKS	(07 Hours)
		e architecture, Computation reuse support for weight redundancy, Computation	
		t redundancy, Multicore neural network implementation – More than K weig an N neurons per layer	ghts per neuron,
	CONVO	UTIONAL NEURAL NETWORKS FOR EMBEDDED SYSTEMS	(10 Hours)
	Brief re	view of efforts on FPGA-based acceleration of CNNs, Network structures a	nd operations –
	Convolu	tion, Inner product - Pooling, Other operations, Optimizing parallelism so	urces,Identifying
	indeper	dent computations, Acceleration strategies, Computation optimization an	d reuse, Design
	control	variables, Partial sums and data reuse, IFMs first strategy, OFMs first strategy	, Proposed loop
	coalesci	ng for flexibility with high efficiency, Bandwidth matching and compute r	nodel, Resource
	utilizatio	on, Unifying off-chip and on-chip memory, Impact of unmatched system, Effe	ctive bandwidth
	latency,	Analyzing runtime, Estimating required offchip bandwidth, Library design	and architecture
	implem	entation, Concurrent architecture, Convolution engine, Optimal DRAM acces	s. Restructuring
		inected layers – Zero overhead pooling, Other layers, Caffe integration, Perform	
	-	er results, Latency estimation model, Exploration strategy, Design variab	
	-	d runs, Network-specific runs, Cross-network run, Architecture comparison, R	•
	improve	•	
	ITERATI	VE CONVOLUTIONAL NEURAL NETWORK (ICNN): AN ITERATIVE CNN	(10 Hours)
	SOLUTIO	ON FOR LOW POWER AND REAL-TIME SYSTEMS	
		ation of CNN, Iterative learning, Case study: iterative AlexNet, ICNN tr	aining schemes,
	Optimiz		-

	Pruning neurons in FC layers, Pruning filters in CONV layers, Policies for exploiting energy-accuracy trade-off in ICNN, Dynamic deadline (DD) policy for real-time applications, Thresholding policy (TP) for dynamic complexity reduction, Fixed thresholding policy – Context-aware pruning policy, Context-aware pruning policy for FC layer – Context aware pruning policy for CONV layer
	(Total Contact Time: 45 Hours)
3.	Books Recommended:
	 Masoud Daneshtalab and Mehdi Modarressi, "Hardware Architectures for Deep Learning (Materials, Circuits and Devices)", IET Publications, 2020. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, "Efficient Processing of Deep Neural Networks", Springer Nature, 31 May 2022 Bert Moons, Daniel Bankman, and Marian Verhelst, "Embedded Deep Learning Algorithms, Architectures and Circuits for Always-on Neural Network Processing", Springer International Publishing ,2018. Albert Chun-Chen Liu, Oscar Ming Kin Law, "Artificial Intelligence Hardware Design Challenges and Solutions", Wiley Publication, 2021 Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks, and Margaret Martonosi, "Deep Learning for Computer Architects (Synthesis Lectures on Computer Architecture)", Morgan and Claypool Life Sciences,2017.
4.	Reference Books:
	 V. Sze, "Designing Hardware for Machine Learning," in IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 46-54, Fall 2017. Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag", Deep In-memory Architectures for Machine Learning", Springer International Publishing, 2020

B.Tech. IV (VL) Semester VII ERROR CORRECTING CODING	Scheme	L	т	Ρ	Credit
EC427		3	0	0	03

1.	Course O	utcomes (COs):	
	At the en	d of the course the students will be able to:	
	CO1	Understand channel coding theorem , importance of error correction i communication	in data
	CO2	Discuss various mathematical tools: groups and finite fields, Linear algeb development of codes and sequences.	ora in the
	CO3	Analyze various Block code encoder and decoder	
	CO4	Design and Develop different error correcting codes for appraise of react to Shannon limit.	hing data rate
	CO5	Compare and contrast the strengths and weaknesses of various errors co	orrecting code
2.	Syllabus:		
	CHANNE	CAPACITY AND CODING	(05 Hours)
		ion, Communication system block Diagram, Channel Models, Channel	
	Coding, T	The Shannon Limit, Hamming Distance, Channel code rate, Few Points of In Probability	
	BLOCK CO	DES	(05 Hours)
		ion to Block Codes, Single Parity Check Codes, Product Codes, Repetition Animum Distance Of Block Codes, Soft - Decision Decoding, Automat	· · · · · ·
	LINEAR C	ODES	(06 Hours)
		n of Linear Codes, Generator Matrices, The Standard Array, Parity - Chees, Error Detection And Correction, Shortened And Extended Linear Codes	
	CYCLIC CO	DDES	(06 Hours)
	Definitio	n Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Coc	les, Decoding Cyclic
		actors Of xn+1, Parity-Check Polynomials, Dual Cyclic Codes, Generato Of Cyclic Codes, Design of cyclic Encoder using LFSR, Cyclic Decoder using	•
	BCH COD	ES	(10 Hours)
	polynom Decoding	gebra, Galois Field, Primitive Field elements, Irreducible and primitive po ials, Definition and Construction of Binary BCH Codes, Error Syndrom SEC and DEC Binary BCH codes, The Error location Polynomial, the Peterson Reed-Solomon Codes	es In Finite Fields,
	CONVOLU	JTION CODES	(08 Hours)
	Convolut	ion, Encoding Convolutional Codes, Generator Matrices for Convolutiona ials For Convolutional Codes, Graphical Representation Of Convolutional	l Codes, Generator
	ADVANC	E ERROR CONTROL CODING	(05 Hours)
		Of Puncturing, Interlever, Turbocode, Introduction to LDPC Codes, Ap	(05 Hours) oplications of Error

3.	Books Recommended:
	 Gravano Salvatore, "Introduction to Error Control Codes", 1st Ed., Oxford University Press, 2007. Shu Lin/ Daniel J. Costello Jr., "Error Control Coding, Fundamental and Applications, Prentice Hall series in computer applications in electrical engineering" 2nd Ed., Series, 2005. Ranjan Bose, "Information theory, coding and cryptography", Tata McGraw-Hill,2nd Edition, April 2008
	 Moon Tood K., "Error Correction Coding - Mathematical Methods and Algorithms", 1st Ed., Wiley- Interscience, 2006. Sklar Bernard, "Digital Communications - Fundamentals and Applications", 2nd Ed., Pearson Education-LPE, 2009

B.Tech. IV (VL) Semester VII DEEP LEARNING	Scheme	L	т	Р	Credit
EC435		3	0	0	03

1.	<u>Course</u>	<u>Dutcomes (COs):</u>						
	At the e	At the end of the course the students will be able to:						
	CO1	O1 Describe Basic Concepts of Machine Learning, Pattern Classification, and Neural Network (NN), and Explain How NN Learn and Function.						
	CO2							
	CO3	CO3 Examine The Principles of Deep Learning Algorithms, Including CNNs And RNNs, and Apply Them to Various Applications Like Image and Sequence Data Processing.						
	CO4 Evaluate the Performance of Deep Learning Models Using Different Optimization Techniques and Network Training Strategies.							
	CO5	Design and Develop Advanced Deep Learning Models, Utilizing Principl and Optimization, for Real-World Applications in Different Domains.	es of Regularization					
2.	Syllabus	<u>:</u>						
	INTROD	UCTION	(07 Hours)					
	Learnin Learnin	Brief History and Evaluation of Deep Learning, Brief Overview of Supervised and Unsupervised Machine Learning Algorithms, Difference Between Machine Learning and Deep Learning, Applications of Deep Learning, Review of Linear Algebra, Vector Calculus and Probability Theory, Discriminant Function and Decision Surface, Perceptron Algorithm.						
	INTRODUCTION NEURAL NETWORKS (12 Hour Biological Inspirations for Artificial Neurons, Single Layer Perceptron, Multilayer Perceptron (MLP Activation Functions, Loss Functions, Computational Graph, Back Propagation Algorithm, Example Back Propagation, Vanishing and Exploding Gradient Problem, Overfitting and Underfitting, Bia Variance Trade-off, Autoencoder, Autoencoder vs PCA.							
	CONVO	LUTIONAL NEURAL NETWORK (CNN)	(08 Hours)					
	Recepti	Convolution, Cross Correlation, Padding, Stride, Pooling, and Their Impact on the Output Dimension Receptive Filed and Feature Maps, Building Blocks of CNN, MLP vs CNN, Popular CNN architecture eNet, AlexNet, VGG, ResNet, GoogleNet, Transfer Learning, Modern CNN Architectures.						
	OPTIMI	ZATION TECHNIQUES AND REGULARIZATION	(06 Hours)					
	and Nes	t Descent (GD), Batch GD, Mini-Batch GD, Stochastic GD, Momentum O sterov Accelerated Gradient (NAG) Optimizer, RMSProp, Adam. Regulariz ularization, Dropout, Early Stopping. Batch Normalization, Instance N zation.	ation Techniques: L1,					
	SEQUEN	TIAL AND GENERATIVE MODELS	(12 Hours)					
	Basics of Sequence Data and Recurrent Neural Network (RNN) Architecture, Long Short-Term Memo (LSTM), Challenges in Training RNNs (Exploding/Vanishing Gradients), Word Embedding, Attentic Mechanism, Transformer Architecture, Comparison Between RNNs, CNNs, and Transformers, Overvie of Generative Models, Difference Between Generative and Discriminative Models, Variation Autoencoders, Generative Adversarial Networks, Recent Trends in Deep Learning.							
	(Total Contact Hours: 45)							

3.	List of Practicals:					
	1. Introduction to Python for machine learning.					
	2. To learn data handling, visualization and pre-processing in Python.					
	3. Implement multilayer perceptron using back propagation for classification.					
	4. Implement and compare various optimization techniques (RMSprop, Adam, A	dagrad)				
	5. Implement principal component analysis (PCA) and Autoencoder for dimensionality reduction and					
	compare their performance.					
	6. Implement Autoencoder for image denoising.	 Implement Autoencoder for image denoising. 				
	7. Implement CNN for binary and multiclass classification and adjust hyper parameters to improve					
	the classification accuracy.					
	8. Perform Image Segmentation using Deep Learning Models.					
	9. Implement recurrent neural network for time series prediction.					
	10. Implement LSTM for time series prediction and compare its performance with	n RNN.				
	11. Implement Attention Based Model for Machine Translation.					
	12. Implement GAN for Image Generation.					
4.	Books Recommended:					
	1. Ian Goodfellow, Yoshua Benjio, Aaron Courville, "Deep Learning," 1st Ed, The					
	2. Eugene Charniak, "Introduction to Deep Learning," 1st Ed, The MIT Press, 201					
	3. <u>Charu C. Aggarwal</u> , "Neural Networks and Deep Learning: A Textbook," 1 st Ed, Springer, 2018.					
	4. <u>Francois Chollet,</u> "Deep Learning with Python," 1st Ed, Manning, 2017.					
	5. David Foster, "Generative Deep Learning: Teaching Machines to Paint, Write,	Compose, and Play,"				
	1 st Ed, O'Reilly Media, 2022.					
5.	Reference Book and Materials:					
	1. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer					
	2. <u>Aurélien Géron</u> , "Hands-On Machine Learning with Scikit-Learn, Keras, and Te					
	Tools, and Techniques to Build Intelligent Systems," 3 rd Ed, O'Reilly Media, 20	22.				