Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Electronics Engineering B.Tech. Electronics and Communication Engineering

Minor Courses:

B. Tech. N	linor in Electronics Engineering			
(for Mech	anical, Civil, and Chemical Engineering students)			
Sr. No.	Subject	Code	Scheme	Credits
1	Analog Electronics	EC2XX	3-0-2	04
2	Digital Electronics and Microcontrollers	EC3XX	3-0-2	04
3	Communication and Signal Processing	EC3XX	3-0-2	04
4	Sensors and Instrumentation	EC4XX	3-0-2	04

B.Tech.2 Semester IV ANALOG ELECTRONICS	Scheme	L	т	Ρ	Credit
EC2XX		3	0	2	04

1.	Course Outcomes (COs):		
	At the end of the course the students will be able to:		
	CO1 Understand the basics of semiconductors and Diodes		
	CO2 Explain Transistors and MOSFETs.		
	CO3 Discuss Optoelectronic devices		
	CO4 Analyse working of Rectifiers, filters, and regulators circu	its	
	CO5 Classify and analyse Amplifiers and Oscillators circuits		
	CO6 Illustrate OP-AMP circuits and 555 Timer applications.		
2.	<u>Syllabus:</u>		
	SEMICONDUCTOR DIODES AND APPLICATIONS		(09 Hours)
	Quantitative theory of PN diode, volt-ampere characteristic		•
	narrow-base diode, transition and diffusion capacitance of	p-n junction di	odes, breakdown of
	junctions on the reverse bias, small signal models of th	e diode, PN d	iode Application as
	Rectifier, Half Wave Rectifier, Centre Tap and Bridge Rec		-
	filter with circuit Diagram and waveforms. Zener Diode th		
	forward and reverse VI characteristics, Zener Voltage Reg	ulator, construc	tion and application
	of Schottky and Varactor Diodes.		
	TRANSISTORS AND MOSFETs		(10 Hours)
	Transistors- definition, terminals, types, symbols, form		-
	Transistor biasing- definition, importance, list types, stabili		•
	and voltage divider method. List configurations and applic		
	relation. CE input and output characteristics- cut off, satura		-
	as a switch. List applications. FET- definition, types. MOS		•••
	type enhancement mode- construction, working, character ratings, BJT, Differentiate BJT and MOSFET.	istics, switch. L	ist applications and
	SPECIAL PURPOSE DIODE		(05 Hours)
	Electron emission- types, applications. Symbols, working	g and application	ons of-photo diode,
	opto isolator, photo voltaic cell, LED, LDR, LCD, opto coup	ler.	
	AMPLIFIERS AND OSCILLATORS		(10 Hours)
	Amplifier- definition, faithful amplification, classification ba	•	· · ·
	frequency. Transistor CE amplifier with biasing. Working		•
	amplifier. Two stage RC coupled amplifier-working, gain in o	• •	
	definition, types, advantages and disadvantages, ap	•	
	classification, LC tank circuit, criteria. RC phase shif	t and crystal	oscillator- working,
	applications.CRT- construction, working and applications		
	OPERATIONAL AMPLIFIER		(11 Hours)
	Differential amplifier-Dual input balanced output differentia	l amplifier, bloc	k diagram of typical
	Op-Amp, schematic symbol, interpreting data sheet, the ide	eal Op-Amp, eq	uivalent circuit of an

	B.Tech. Electronics and Communication Engineering
	Op-Amp, Op-Amp Parameters-Input Impedance, Output impedance, input offset voltage,
	Open Loop Voltage gain, input bias current, slew rate open loop Op-Amp configurations
	Application: Voltage series feedback amplifier, Voltage shunt feedback amplifier, DC and AC amplifiers, summing, scaling and averaging amplifiers, voltage to current converter, integrator, differentiator, basic comparator, zero-crossing detector, Schmitt trigger
	PRACTICAL WILL BE BASED ON THE COVERAGE OF THE ABOVE (30 Hours) TOPICS SEPARATELY
	(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)
3.	List of Practicals:
	1. To study the Active/Passive Components and Various Instruments
	 To study and plot the volt-ampere characteristics of pn junction diode in Forward and Reverse
	bias and obtain the cut-in voltage.
	3. To study and design Half Wave Rectifier with and without filter and calculate its ripple factors.
	4. To study and design Zener diode based voltage regulator and calculate the line and load
	regulation.
	5. To study and design Full Wave Rectifier with and without filter and calculate its ripple factors.
	6. To study and plot the I/P and O/P characteristics of BJT / MOSFET
	7. To study and design single RC coupled Amplifier using BJT/MOSFET.
	8. To study and design Inverting & Non Inverting Amplifier using Op-Amp
	9. To study and design Adder/Subtractor using Op-Amp
	10. To study and Design RC Phase Shift Oscillator using BJT/op-amp
	11. To study and Design square wave generator using op-amp
	12. Minor Project
4.	Reference Books:
	1. Electronics Principles and applications by Charles A Schuler and Roger L Tokhiem, Sixth
	Edition, Mc. Graw Hill , 2008.
	2. Electronics Principles by Malvino, Mc. Graw Hill, Third edition. 2000.
	3. Electronics Devices and Circuits by Allan Mottershed, PHI Learning Pvt. Ltd., First Edition.
	4. Electronics Analog and Digital by I. J. Nagrath, PHI Learning Pvt. Ltd., 2013 Edition.
	5. Linear Integrated Circuits by Ramakant A. Gayakwad, PHI Learning Pvt. Ltd., Fourth Edition
	S. Enter mograted enteries by Ramakant A. Cayakwad, I'm Eoanning I'vi. Etd., I'oultin Editori

B.Tech.2 Semester IV DIGITAL ELECTRONICS AND MICROCONTROLLERS	Scheme	L	т	Ρ	Credit
EC3XX		3	0	2	04

1.	Course	e Outcomes (COs):	
	At the e	end of the course the students will be able to:	
	CO1	Apply Boolean algebra to understand binary logic and logic circuits.	
	CO2	Formulate combinational logic problems and solve using truth table. Op map and other equivalent techniques	timize using K-
	CO3	Design and realize synchronous Sequential logic circuits	
	CO4	Understand operation counters, registers and memory	
	CO4	Investigate organization of computer and describe internal architecture	of
		8051microcontroller	
	CO6	Develop Assembly programs of microcontroller to implement algorithms	
2.	<u>Syllabı</u>	<u>IS:</u>	
	•	BOOLEAN ALGEBRA AND SIMPLIFICATION	(06 Hours)
		Basic Logic Operation and Logic Gates, Truth Table, Basic Postulate Theorems of Boolean Algebra, Minterms and Maxterms, Standard Repr Functions- SoP and PoS Forms, Introduction to K maps, Simplification of using K-Map.	esentations of Logic
	•	COMBINATIONAL LOGIC CIRCUITS	(09 Hours)
		Full adder and Full subtractor design, Binary Parallel Adder, Carry Magnitude comparator, BCD adder, Encoder Priority Encoder, Decoder, multiplexer Circuits, Implementation of Boolean Functions using Deco Arithmetic and Logic Units.	Multiplexer and De-
	•	LATCHES AND FLIP-FLOPS	(08 Hours)
		Cross Coupled SR Flip-Flop Using NAND or NOR Gates, Clocked Flip Toggle Flip-flops, Truth Tables and Excitation Tables for Flip-flop. Master Edge Triggered and Level Triggered Flip-flop, Flip-flop with Preset and C	Slave Configuration,
	•	SEQUENTIAL LOGIC CIRCUIT	(08 Hours)
		Introduction to State Machine, Mealy and Moore Model, State Mach Diagram, State Table, Flip flop excitation table, Design procedure of circuits.	
		Registers with parallel load, Shift Left and Shift Right Register, Serial-in and Parallel-In-Serial-Out(PISO), Ripple counter, and synchronous count	()
	•	INTRODUCTION TO MICROCONTROLLERS	(06 Hours)
		Internal Organization of Computer, Buses of the computing system, CPU ALU), Introduction to 8051 8-bit microcontroller, Internal architecture of 8 modes. A brief overview of I/O Ports, Timers, and Serial communicrocontrollers.	with RAM and ROM, 051, and Addressing

	B.Tech. Electronics and Communication Engineering	
	8051 ASSEMBLY LANGUAGE PROGRAMMING	(08 Hours)
	8051 data types and registers, Instructions for moving data, Arithmetic and	
	Jump and CALL instructions, and Example programs in assembly languag	e.
	PRACTICAL WILL BE BASED ON THE COVERAGE OF THE ABOVE	(30 Hours)
	TOPICS SEPARATELY	
	(Total Contact Time: 45 Hours + 30	Hours = 75 Hours)
3.	List of Practicals:	
	((Following practicals are to be performed using discrete components)	
	1. Verify truth table of variety of logic gates	
	Flip-flops using NAND/ NOR Gate.	
	3. Half-Adder/ Half-subtarctor Circuits	
	 Full-Adder/ Full-subtarctor Circuits . 4-Bit Gray To Binary/ Binary To Gray Code convertor using Select input. 	
	6. RS and D flip flop using NAND gates	
	7. JK and T flip flops using NAND gates	
	8. Shift registers using D flip flops	
	9. 4-bit ripple counter	
	10. Implement mod 5 synchronous counter	
	(Following 8051 assembly programming PracticalS are to be performed Keil uVision	on tool)
	11. Move block of Data from source to destination Keil uVision	
	12. Write assembly code to read data from array and compute sum	
	13. Develop assembly code to convert BCD to binary.	
	14. Write assembly code to convert Binary number to BCD	
4.	Books Recommended:	
	1. Mano Morris, "Digital Logic and Computer Design", Pearson Education, 2019	9 Edition.
	2. Anand Kumar, "Fundamentals of Digital Circuits", PHI, 4th Ed., 2016.	
	 Jain R. P. and Anand M. H. S., "Digital Electronics Practices using Integrated 1st Ed., 2004. 	Circuits", TMH,
	4. K. Ayala, "The 8051 Microcontroller", Cengage Learning, 3rd Ed., 2009.	
	5. Muhammad A. Mazidi and Janice G. Mazidi, "The 8051 Microcontroller and E	mbedded
	Systems", Pearson, 2nd Ed.,2013.	

B.Tech.2 Semester IV COMMUNICATION AND SIGNAL PROCESSING	Scheme	L	т	Р	Credit
EC3XX		3	0	2	04

1.	Course	Outcomes (COs):	
	At the e	nd of the course the students will be able to:	
	CO1	Describe the basic knowledge of Communication techniques including communication and details of wireless link	analog and digital
	CO2	Explain about signal processing aspects involved in analog digital com time and frequency domain fundamentals.	munication with
	CO3	Apply the concepts to the problems of communication techniques for o performance, may be using signal processing aspects.	ptimizing the
	CO4	Compare performance analysis of various modulation and coding tech case study and problem solving as per given parameters.	niques for a link,
	CO5	Evaluate various stages of communication link and signal processing p parameters by experimentation using modern tools/simulators and har	
	CO6	Design the communication link with optimum parameter selection criter requirements.	ria satisfying given
2.	<u>Syllabı</u>	<u>IS:</u>	
	•	TRANSMISSION OF SIGNALS	(08 Hours)
		Transmission of some useful functions, Signal Transmission Through a Convolution concepts, Ideal versus Practical Filter, Channel as a filter	-
	•	NOISE	(03 Hours)
		Various Types of Noises: Internal (Shot, Thermal, Agitation, Transit Time) (Atmospheric, Extra-Terrestrial, Industrial) Noise, White Noise and Filt Properties	
	•	AMPLITUDE MODULATION AND DEMODULATION ECHNIQUES	(06 Hours)
		Modulation, Antenna requirements, Transmission mediums, Bas Communications, DSB-C And DSB-SC Amplitude Modulation, Bandwidt Vestigial Sideband (VSB) Transmission, Frequency Division Multiplexing.	h Efficient AM: SSB,
		FREQUENCY MODULATION AND DEMODULATION	(04 Hours)
		Nonlinear Modulation, Bessel's function, Carson's Rule, Bandwidth (Waves, NBFM and WBFM, Generating FM Waves, Demodulation of FM (0
		SAMPLING AND PULSE MODULATION TECHNIQUES	(08 Hours)
		Sampling theorem, Periodic Sampling, Frequency-Domain Represen Reconstruction of a Bandlimited Signals, Discrete-Time Processing Signals, Continuous the Sampling Processing of Discrete-Time Process to D conversion of signals, Quantization techniques—Uniform and Non-u law, Pulse Code Modulation, Pulse Amplitude Modulation, Pulse Positio Width modulation.	of Continuous-Time ing. Sampling and A niform, A-law and μ-

	B.Tech. Electronics and Communication Engineering	
	 DIGITAL DATA TRANSMISSION AND RECEPTION USING SIGNAL PROCESSING 	(08 Hours)
	Digital Communication System, Line Coding, Pulse Shaping For Optimu and ISI-Free transmission, Band-limiting of Rectangular Pulses, Raise Regenerative Repeaters, Matched Filter And Equalizers, Eye Diagrams	
	BANDPASS SIGNAL TRANSMISSION-DIGITAL CARRIER SYSTEM	(08 Hours)
	Representation Of Digital Modulated Signal, ASK, PSK, FSK, QAI Mathematics and Constellation Diagram, Spectral Characteristics of Signals. M-Ary Digital Carrier Modulation.	
	PRACTICAL WILL BE BASED ON THE COVERAGE OF THE ABOVE TOPICS SEPARATELY	(30 Hours)
	(Total Contact Time: 45 Hours + 30	Hours = 75 Hours)
3.	List of Practicals:	
	 AM with Performance Analysis under Channel Effects. FM with Performance Analysis under Channel Effects. Sampling theorem FDM and TDM Simulation of ASK, FSK and PSK with study of constellation diagram. Simulation of Line Coding Techniques. Simulation and Implement the Effect of Raised Cosine Filter and pulse shapi Simulation of Eye Diagram,. Source Coding Techniques Error Control Coding Techniques. 	ing.
4.	Books Recommended:	
	 Lathi B.P. and Ding Zhu, "Modern Digital And Analog Communication Syster University Press, 2010. John G. Proakis and Masoud Salehi, "Digital Communications", 5th Ed., McC 3. Bhattacharya Amitabh, "Digital Communication", 1st Ed., Tata McGraw-Hill, 	Graw-Hill, 2014.

B.Tech.2 Semester IV SENSORS & INSTRUMENTATION	Scheme	L	т	Р	Credit
EC4XX		3	0	2	04

1.	Course		
	At the e	end of the course the students will be able to:	
	CO1	Explain the different types of sensors, signal conditioning and data acqui with working principle	isition methods
	CO2	Apply the concepts of sensors and instrumentation for various application	ons
	CO3	Analyze different sensors and signal conditioning methods for various reapplications.	
	CO4	Evaluate the applications of sensors and data acquisition methods in in	strumentation.
	CO5	Design the sensors systems for different applications	
2.	<u>Syllabu</u>	IS:	
	•	CONCEPTS AND TERMINOLOGY	(04 Hours)
		Definition of Sensor, Transducer And Actuator, Transducer/Sensor Class Choose a Sensor, Sensor Classification, Measurement Systems, G Configuration, Static and Dynamic Characteristics of Sensors.	sification, Criteria to
	•	PASSIVE SENSORS	(10 Hours)
		Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs)	•
		Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs) Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors	Sensors, Capacitive
		Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Aco	Sensors, Capacitive ustic Sensors, SAW
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrod	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyror Photo-voltaic transducer, Electrochemical transducer. SIGNAL CONDITIONING FOR SENSORS	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours)
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acou Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrop Photo-voltaic transducer, Electrochemical transducer.	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours) nce, Differential And
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrov Photo-voltaic transducer, Electrochemical transducer. SIGNAL CONDITIONING FOR SENSORS Voltage Dividers, Wheatstone Bridge, Sensor bridge calibration and bala Instrumentation Amplifiers, Interference, Specific Signal Conditioners for	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours) nce, Differential And Sensors, Telemetry
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrov Photo-voltaic transducer, Electrochemical transducer. SIGNAL CONDITIONING FOR SENSORS Voltage Dividers, Wheatstone Bridge, Sensor bridge calibration and bala Instrumentation Amplifiers, Interference, Specific Signal Conditioners for system.	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours) nce, Differential And Sensors, Telemetry (09 Hours) essive approximation
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrov Photo-voltaic transducer, Electrochemical transducer. SIGNAL CONDITIONING FOR SENSORS Voltage Dividers, Wheatstone Bridge, Sensor bridge calibration and bala Instrumentation Amplifiers, Interference, Specific Signal Conditioners for system. DATA ACQUISITION METHODS Basic block diagram, Analog and Digital IO, Timers, Type of ADC: Succe and sigma-delta, Types of DAC: Weighted Resistor and R-2R Ladder	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours) nce, Differential And Sensors, Telemetry (09 Hours) essive approximation
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrov Photo-voltaic transducer, Electrochemical transducer. SIGNAL CONDITIONING FOR SENSORS Voltage Dividers, Wheatstone Bridge, Sensor bridge calibration and bala Instrumentation Amplifiers, Interference, Specific Signal Conditioners for system. DATA ACQUISITION METHODS Basic block diagram, Analog and Digital IO, Timers, Type of ADC: Succe and sigma-delta, Types of DAC: Weighted Resistor and R-2R Ladder Sockets for Networked Communication.	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours) nce, Differential And Sensors, Telemetry (09 Hours) essive approximation r type, Use of Data (05 Hours) n Smart City, MEMS,
	•	Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas S Sensors, Inductive Sensors, Hall effect Sensors, Optical Sensors, Acor Sensors SELF-GENERATING SENSORS Principle of operation, construction, theory, advantages and disadvantage of following transducers: Thermocouple, Piezo-electric transducer, Pyrod Photo-voltaic transducer, Electrochemical transducer. SIGNAL CONDITIONING FOR SENSORS Voltage Dividers, Wheatstone Bridge, Sensor bridge calibration and bala Instrumentation Amplifiers, Interference, Specific Signal Conditioners for system. DATA ACQUISITION METHODS Basic block diagram, Analog and Digital IO, Timers, Type of ADC: Succe and sigma-delta, Types of DAC: Weighted Resistor and R-2R Ladder Sockets for Networked Communication. ADVANCEMENTS IN SENSORS AND INSTRUMENTATION Sensors For Robotics, Sensors Used In Smartphones, Sensors Used In Nano Sensors, Smart Sensors, Integrated Sensors, IoT Applications	Sensors, Capacitive ustic Sensors, SAW (08 Hours) es and applications electric transducers, (09 Hours) nce, Differential And Sensors, Telemetry (09 Hours) essive approximation r type, Use of Data (05 Hours) n Smart City, MEMS,

3.	List of Practicals:
	1. To study the characteristics of the Potentiometer.
	2. To study the characteristics of Variable Capacitor
	To study the characteristics of Strain Gauge.
	To study the characteristics of Light Dependent Resistor.
	5. To study the characteristics of LVDT
	To study the characteristics of the Resistance Temperature Detector
	7. To study the characteristics of a Thermistor.
	To study the characteristics of Thermocouples.
	9. Design and Implement a Simple R to V, V to I, and V to V Convertor given specifications.
	10. Bridge Linearity technique using Op-AMP.
	11. Instrumentation amplifier using Feedback.
	12. DATA acquisition using DAQ card.
4.	Books Recommended:
	books Recommended.
	1. Arun K. Ghosh, Introduction to Measurements and Instrumentation, PHI 4 th Edition 2012.
	2. Arun K. Ghosh, Introduction to Transducers, PHI, 2014.
	3. D Patranabis, Sensors and Transducers, PHI 2nd Edition 2013.
	4. S. Vijayachitra, Transducers Engineering, PHI 2016.
	5. S. Gupta, J.P. Gupta / PC interfacing for Data Acquisition & Process Control, 2nd ED /
	Instrument Society of America, 1994.
5.	Reference Books:
	1. DVS Murthy, Transducers and Instrumentation, PHI 2nd Edition2013
	2. Gary Johnson / Lab VIEW Graphical Programing II Edition /McGraw Hill 1997.
1	