Department of Mechanical Engineering

S. V. National Institute of Technology, Surat

Syllabus of Written Test for Thermal, Design & Manufacturing Stream for Ph.D. Admission

Specialization	Syllabus
Engineering	Linear Algebra: Matrix algebra, systems of linear equations, eigenvalues and
Mathematics	eigenvectors.
(common for all	Calculus: Functions of single variable, limit, continuity and differentiability, mean
streams: maximum	value theorems, indeterminate forms; evaluation of definite and improper integrals;
20% weightage)	double and triple integrals; partial derivatives, total derivative, Taylor series (in one
	and two variables), maxima and minima, Fourier series; gradient, divergence and
	curl, vector identities, directional derivatives, line, surface and volume integrals,
	applications of Gauss, Stokes and Green's theorems.
	Differential equations: First order equations (linear and nonlinear); higher order
	linear differential equations with constant coefficients; Euler-Cauchy equation;
	initial and boundary value problems; Laplace transforms; solutions of heat, wave
	and Laplace's equations.
	Complex variables: Analytic functions; Cauchy-Riemann equations; Cauchy's
	integral theorem and integral formula; Taylor and Laurent series.
	Probability and Statistics: Definitions of probability, sampling theorems,
	conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.
	Numerical Methods: Numerical solutions of linear and non-linear algebraic
	equations; integration by trapezoidal and Simpson's rules; single and multi-step
	methods for differential equations.
Thermal & Fluid	Fluid Mechanics: Fluid properties; fluid statics, forces on submerged bodies,
	stability of floating bodies; control-volume analysis of mass, momentum and
	energy; fluid acceleration; differential equations of continuity and momentum;
	Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids,
	boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes,
	bends and fittings; basics of compressible fluid flow.
	Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance
	concept and electrical analogy, heat transfer through fins; unsteady heat conduction,
	lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless
	parameters in free and forced convective heat transfer, heat transfer correlations for
	flow over flat plates and through pipes, effect of turbulence; heat exchanger
	performance, LMTD and NTU methods; radiative heat transfer, StefanBoltzmann
	law, Wien's displacement law, black and grey surfaces, view factors, radiation
	network analysis. Thermodynamics: Thermodynamic systems and processes: properties of pure
	Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of
	thermodynamics, calculation of work and heat in various processes; second law of
	thermodynamics; thermodynamic property charts and tables, availability and
	irreversibility; thermodynamic relations.
	Applications: Power Engineering: Air and gas compressors; vapour and gas power
	cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel
	and dual cycles.
	Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump
	cycles; properties of moist air, psychrometric chart, basic psychrometric processes.
	Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel,
	Francis and Kaplan turbines; steam and gas turbines.

Design and Dynamics

Engineering Mechanics: Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange's equation.

Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the SN diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Manufacturing & Industrial

Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

Metrology and Inspection: limits, fits and tolerances: linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM).

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools; additive manufacturing.

Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing.

Inventory Control: Deterministic models; safety stock inventory control systems. **Operations Research:** Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.